Cargando…

A protein folding molecular imaging biosensor monitors the effects of drugs that restore mutant p53 structure and its downstream function in glioblastoma cells

Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 stru...

Descripción completa

Detalles Bibliográficos
Autores principales: Paulmurugan, Ramasamy, Afjei, Rayhaneh, Sekar, Thillai V., Babikir, Husam A., Massoud, Tarik F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5940411/
https://www.ncbi.nlm.nih.gov/pubmed/29765555
http://dx.doi.org/10.18632/oncotarget.25138
Descripción
Sumario:Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53(P98L) mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53(wt), p53(Y220C), p53(G245S) and p53(R282W). We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53(P98L) Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53.