Cargando…

MicroRNA-495 inhibits the high glucose-induced inflammation, differentiation and extracellular matrix accumulation of cardiac fibroblasts through downregulation of NOD1

BACKGROUND: MicroRNAs (miRNAs) have physiological and pathophysiological functions that are involved in the regulation of cardiac fibrosis. This study aimed to investigate the effects of miR-495 on high glucose-induced cardiac fibrosis in human cardiac fibroblasts (CFs) and to establish the mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaowei, Jin, Haiying, Jiang, Shifeng, Xu, Yanlan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5941488/
https://www.ncbi.nlm.nih.gov/pubmed/29760746
http://dx.doi.org/10.1186/s11658-018-0089-x
Descripción
Sumario:BACKGROUND: MicroRNAs (miRNAs) have physiological and pathophysiological functions that are involved in the regulation of cardiac fibrosis. This study aimed to investigate the effects of miR-495 on high glucose-induced cardiac fibrosis in human cardiac fibroblasts (CFs) and to establish the mechanism underlying these effects. METHODS: Human CFs were transfected with an miR-495 inhibitor or mimic and incubated with high glucose. The levels of NOD1 and miR-495 were then determined via quantitative RT-PCR. Pro-inflammatory cytokine levels, cell differentiation and extracellular matrix accumulation were respectively detected using ELISA, quantitative RT-PCR and western blot assays. The luciferase reporter assay, quantitative RT-PCR and western blot were used to explore whether NOD1 was a target of miR-495. The effects of miR-495 on the NF-κB and TGF-β1/Smad signaling pathways were also detected via western blot. RESULTS: Our results show that high glucose can significantly increase the expression of NOD1 in a time-dependent manner. Upregulation of miR-495 significantly alleviated the high glucose-induced increases in cell differentiation and collagen accumulation of CFs. Moreover, the bioinformatics analysis predicted that NOD1 was a potential target gene for miR-495. The luciferase reporter assay showed that miR-495 can directly target NOD1. The introduction of miR-495 could significantly inhibit the high glucose-activated NF-κB and TGF-β1/Smad signaling pathways. CONCLUSION: Upregulation of miR-495 ameliorates the high glucose-induced inflammatory, cell differentiation and extracellular matrix accumulation of human CFs by modulating both the NF-κB and TGF-β1/Smad signaling pathways through downregulation of NOD1 expression. These results provide further evidence for the protective effect of miR-495 overexpression in cases of high glucose-induced cardiac fibrosis.