Cargando…
Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination
The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945229/ https://www.ncbi.nlm.nih.gov/pubmed/29708962 http://dx.doi.org/10.1371/journal.pbio.2004162 |
_version_ | 1783321960095154176 |
---|---|
author | Baek, Chooyoung Freem, Lucy Goïame, Rosette Sang, Helen Morin, Xavier Tozer, Samuel |
author_facet | Baek, Chooyoung Freem, Lucy Goïame, Rosette Sang, Helen Morin, Xavier Tozer, Samuel |
author_sort | Baek, Chooyoung |
collection | PubMed |
description | The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation. |
format | Online Article Text |
id | pubmed-5945229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59452292018-05-25 Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination Baek, Chooyoung Freem, Lucy Goïame, Rosette Sang, Helen Morin, Xavier Tozer, Samuel PLoS Biol Research Article The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation. Public Library of Science 2018-04-30 /pmc/articles/PMC5945229/ /pubmed/29708962 http://dx.doi.org/10.1371/journal.pbio.2004162 Text en © 2018 Baek et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Baek, Chooyoung Freem, Lucy Goïame, Rosette Sang, Helen Morin, Xavier Tozer, Samuel Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title | Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title_full | Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title_fullStr | Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title_full_unstemmed | Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title_short | Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
title_sort | mib1 prevents notch cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945229/ https://www.ncbi.nlm.nih.gov/pubmed/29708962 http://dx.doi.org/10.1371/journal.pbio.2004162 |
work_keys_str_mv | AT baekchooyoung mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination AT freemlucy mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination AT goiamerosette mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination AT sanghelen mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination AT morinxavier mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination AT tozersamuel mib1preventsnotchcisinhibitiontodeferdifferentiationandpreserveneuroepithelialintegrityduringneuraldelamination |