Cargando…

Cell type discovery using single-cell transcriptomics: implications for ontological representation

Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing ‘big data’, enabling the identification of novel human cell types...

Descripción completa

Detalles Bibliográficos
Autores principales: Aevermann, Brian D, Novotny, Mark, Bakken, Trygve, Miller, Jeremy A, Diehl, Alexander D, Osumi-Sutherland, David, Lasken, Roger S, Lein, Ed S, Scheuermann, Richard H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946857/
https://www.ncbi.nlm.nih.gov/pubmed/29590361
http://dx.doi.org/10.1093/hmg/ddy100
_version_ 1783322264871108608
author Aevermann, Brian D
Novotny, Mark
Bakken, Trygve
Miller, Jeremy A
Diehl, Alexander D
Osumi-Sutherland, David
Lasken, Roger S
Lein, Ed S
Scheuermann, Richard H
author_facet Aevermann, Brian D
Novotny, Mark
Bakken, Trygve
Miller, Jeremy A
Diehl, Alexander D
Osumi-Sutherland, David
Lasken, Roger S
Lein, Ed S
Scheuermann, Richard H
author_sort Aevermann, Brian D
collection PubMed
description Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing ‘big data’, enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.
format Online
Article
Text
id pubmed-5946857
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-59468572018-05-16 Cell type discovery using single-cell transcriptomics: implications for ontological representation Aevermann, Brian D Novotny, Mark Bakken, Trygve Miller, Jeremy A Diehl, Alexander D Osumi-Sutherland, David Lasken, Roger S Lein, Ed S Scheuermann, Richard H Hum Mol Genet Invited Reviews Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing ‘big data’, enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease. Oxford University Press 2018-05-01 2018-03-24 /pmc/articles/PMC5946857/ /pubmed/29590361 http://dx.doi.org/10.1093/hmg/ddy100 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Invited Reviews
Aevermann, Brian D
Novotny, Mark
Bakken, Trygve
Miller, Jeremy A
Diehl, Alexander D
Osumi-Sutherland, David
Lasken, Roger S
Lein, Ed S
Scheuermann, Richard H
Cell type discovery using single-cell transcriptomics: implications for ontological representation
title Cell type discovery using single-cell transcriptomics: implications for ontological representation
title_full Cell type discovery using single-cell transcriptomics: implications for ontological representation
title_fullStr Cell type discovery using single-cell transcriptomics: implications for ontological representation
title_full_unstemmed Cell type discovery using single-cell transcriptomics: implications for ontological representation
title_short Cell type discovery using single-cell transcriptomics: implications for ontological representation
title_sort cell type discovery using single-cell transcriptomics: implications for ontological representation
topic Invited Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946857/
https://www.ncbi.nlm.nih.gov/pubmed/29590361
http://dx.doi.org/10.1093/hmg/ddy100
work_keys_str_mv AT aevermannbriand celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT novotnymark celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT bakkentrygve celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT millerjeremya celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT diehlalexanderd celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT osumisutherlanddavid celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT laskenrogers celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT leineds celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation
AT scheuermannrichardh celltypediscoveryusingsinglecelltranscriptomicsimplicationsforontologicalrepresentation