Cargando…
Cell type discovery using single-cell transcriptomics: implications for ontological representation
Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing ‘big data’, enabling the identification of novel human cell types...
Autores principales: | Aevermann, Brian D, Novotny, Mark, Bakken, Trygve, Miller, Jeremy A, Diehl, Alexander D, Osumi-Sutherland, David, Lasken, Roger S, Lein, Ed S, Scheuermann, Richard H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946857/ https://www.ncbi.nlm.nih.gov/pubmed/29590361 http://dx.doi.org/10.1093/hmg/ddy100 |
Ejemplares similares
-
Cell type discovery and representation in the era of high-content single cell phenotyping
por: Bakken, Trygve, et al.
Publicado: (2017) -
A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
por: Aevermann, Brian, et al.
Publicado: (2021) -
FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test
por: Zhang, Yun, et al.
Publicado: (2020) -
Brain Data Standards - A method for building data-driven cell-type ontologies
por: Tan, Shawn Zheng Kai, et al.
Publicado: (2023) -
Author Correction: Brain Data Standards - A method for building data-driven cell-type ontologies
por: Tan, Shawn Zheng Kai, et al.
Publicado: (2023)