Cargando…
Activation of TGF-β-activated kinase 1 (TAK1) restricts Salmonella Typhimurium growth by inducing AMPK activation and autophagy
Autophagy is a conserved cellular process that functions as a first-line defense to restrict the growth of invading parasitic bacteria. As an intracellular pathogen, Salmonella (S) Typhimurium invades host cells through two Type III secretion systems (T3SS) and resides in the Salmonella-containing v...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948208/ https://www.ncbi.nlm.nih.gov/pubmed/29752434 http://dx.doi.org/10.1038/s41419-018-0612-z |
Sumario: | Autophagy is a conserved cellular process that functions as a first-line defense to restrict the growth of invading parasitic bacteria. As an intracellular pathogen, Salmonella (S) Typhimurium invades host cells through two Type III secretion systems (T3SS) and resides in the Salmonella-containing vacuole (SCV). When the SCV membrane is perforated and ruptured by T3SS-1, a small portion of the Salmonella egresses from the SCV and replicates rapidly in the nutrient-rich cytosol. Cytosolic Salmonella and those residing in the membrane-damaged SCV are tagged by ubiquitination and marked for autophagy through the ubiquitin-binding adaptor proteins such as p62, NDP52, and optineurin. Prior studies suggest that transient intracellular amino-acid starvation and subsequent inactivation of the mechanistic target of rapamycin (mTOR), a key molecule that phosphorylates Unc-51 like autophagy activating kinase (ULK1) and inhibits its activity, can trigger autophagy in S. Typhimurium-infected cells. Other studies suggest that energy stress in S. Typhimurium-infected cells leads to AMP-activated protein kinase (AMPK) activation and autophagy. In the present study, we report that autophagy was rapidly induced in S. Typhimurium-infected cells, as evidenced by increased LC3 lipidation and decreased p62 levels. However, S. Typhimurium infection drastically increased AKT phosphorylation but decreased S6K1(T389), 4E-BP(T37/46), and ULK1(S757) phosphorylation, suggesting that mTOR activation by AKT is subverted. Further studies showed that AMPK was activated in S. Typhimurium-infected cells, as evidenced by increased ULK1(S317) and ACC(S79) phosphorylation. AMPK activation was mediated by Toll-like receptor-activated TAK1. Functional studies revealed that AMPK and TAK1 inhibitors accelerated S. Typhimurium growth in HeLa cells. Our results strongly suggest that TAK1 activation leads to AMPK activation, which activates ULK1 by phosphorylating ULK1(S317) and suppressing mTOR activity and ULK1(S757) phosphorylation. Our study has unveiled a previously unrecognized pathway for S. Typhimurium-induced autophagy. |
---|