Cargando…
A Student’s t Mixture Probability Hypothesis Density Filter for Multi-Target Tracking with Outliers
In multi-target tracking, the outliers-corrupted process and measurement noises can reduce the performance of the probability hypothesis density (PHD) filter severely. To solve the problem, this paper proposed a novel PHD filter, called Student’s t mixture PHD (STM-PHD) filter. The proposed filter m...
Autores principales: | Liu, Zhuowei, Chen, Shuxin, Wu, Hao, He, Renke, Hao, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948621/ https://www.ncbi.nlm.nih.gov/pubmed/29617348 http://dx.doi.org/10.3390/s18041095 |
Ejemplares similares
-
Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking
por: Yang, Feng, et al.
Publicado: (2016) -
Vehicle Detection Based on Probability Hypothesis Density Filter
por: Zhang, Feihu, et al.
Publicado: (2016) -
Stochastic Feedback Based Continuous-Discrete Cubature Kalman Filtering for Bearings-Only Tracking
por: He, Renke, et al.
Publicado: (2018) -
Two Measurement Set Partitioning Algorithms for the Extended Target Probability Hypothesis Density Filter
por: Han, Yulan, et al.
Publicado: (2019) -
Gaussian Mixture Cardinalized Probability Hypothesis Density(GM-CPHD): A Distributed Filter Based on the Intersection of Parallel Inverse Covariances
por: Wang, Liu, et al.
Publicado: (2023)