Cargando…
Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection
Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954121/ https://www.ncbi.nlm.nih.gov/pubmed/29765018 http://dx.doi.org/10.1038/s41467-018-04217-5 |
_version_ | 1783323460026499072 |
---|---|
author | Song, Hongshuo Giorgi, Elena E. Ganusov, Vitaly V. Cai, Fangping Athreya, Gayathri Yoon, Hyejin Carja, Oana Hora, Bhavna Hraber, Peter Romero-Severson, Ethan Jiang, Chunlai Li, Xiaojun Wang, Shuyi Li, Hui Salazar-Gonzalez, Jesus F. Salazar, Maria G. Goonetilleke, Nilu Keele, Brandon F. Montefiori, David C. Cohen, Myron S. Shaw, George M. Hahn, Beatrice H. McMichael, Andrew J. Haynes, Barton F. Korber, Bette Bhattacharya, Tanmoy Gao, Feng |
author_facet | Song, Hongshuo Giorgi, Elena E. Ganusov, Vitaly V. Cai, Fangping Athreya, Gayathri Yoon, Hyejin Carja, Oana Hora, Bhavna Hraber, Peter Romero-Severson, Ethan Jiang, Chunlai Li, Xiaojun Wang, Shuyi Li, Hui Salazar-Gonzalez, Jesus F. Salazar, Maria G. Goonetilleke, Nilu Keele, Brandon F. Montefiori, David C. Cohen, Myron S. Shaw, George M. Hahn, Beatrice H. McMichael, Andrew J. Haynes, Barton F. Korber, Bette Bhattacharya, Tanmoy Gao, Feng |
author_sort | Song, Hongshuo |
collection | PubMed |
description | Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo. |
format | Online Article Text |
id | pubmed-5954121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59541212018-05-17 Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection Song, Hongshuo Giorgi, Elena E. Ganusov, Vitaly V. Cai, Fangping Athreya, Gayathri Yoon, Hyejin Carja, Oana Hora, Bhavna Hraber, Peter Romero-Severson, Ethan Jiang, Chunlai Li, Xiaojun Wang, Shuyi Li, Hui Salazar-Gonzalez, Jesus F. Salazar, Maria G. Goonetilleke, Nilu Keele, Brandon F. Montefiori, David C. Cohen, Myron S. Shaw, George M. Hahn, Beatrice H. McMichael, Andrew J. Haynes, Barton F. Korber, Bette Bhattacharya, Tanmoy Gao, Feng Nat Commun Article Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo. Nature Publishing Group UK 2018-05-15 /pmc/articles/PMC5954121/ /pubmed/29765018 http://dx.doi.org/10.1038/s41467-018-04217-5 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Song, Hongshuo Giorgi, Elena E. Ganusov, Vitaly V. Cai, Fangping Athreya, Gayathri Yoon, Hyejin Carja, Oana Hora, Bhavna Hraber, Peter Romero-Severson, Ethan Jiang, Chunlai Li, Xiaojun Wang, Shuyi Li, Hui Salazar-Gonzalez, Jesus F. Salazar, Maria G. Goonetilleke, Nilu Keele, Brandon F. Montefiori, David C. Cohen, Myron S. Shaw, George M. Hahn, Beatrice H. McMichael, Andrew J. Haynes, Barton F. Korber, Bette Bhattacharya, Tanmoy Gao, Feng Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title | Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title_full | Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title_fullStr | Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title_full_unstemmed | Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title_short | Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection |
title_sort | tracking hiv-1 recombination to resolve its contribution to hiv-1 evolution in natural infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5954121/ https://www.ncbi.nlm.nih.gov/pubmed/29765018 http://dx.doi.org/10.1038/s41467-018-04217-5 |
work_keys_str_mv | AT songhongshuo trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT giorgielenae trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT ganusovvitalyv trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT caifangping trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT athreyagayathri trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT yoonhyejin trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT carjaoana trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT horabhavna trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT hraberpeter trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT romeroseversonethan trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT jiangchunlai trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT lixiaojun trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT wangshuyi trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT lihui trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT salazargonzalezjesusf trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT salazarmariag trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT goonetillekenilu trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT keelebrandonf trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT montefioridavidc trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT cohenmyrons trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT shawgeorgem trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT hahnbeatriceh trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT mcmichaelandrewj trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT haynesbartonf trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT korberbette trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT bhattacharyatanmoy trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection AT gaofeng trackinghiv1recombinationtoresolveitscontributiontohiv1evolutioninnaturalinfection |