Cargando…

Cytokeratin 8/18 protects breast cancer cell lines from TRAIL-induced apoptosis

TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis by engaging its death receptors (DRs) 4 and/or 5 on targeted cells. Clinical attempts to stimulate this apoptotic pathway for cancer therapy, including the use of recombinant human TRAIL (rhTRAIL) or receptor agonistic antibodies, have...

Descripción completa

Detalles Bibliográficos
Autores principales: Bozza, William P., Zhang, Yaqin, Zhang, Baolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955420/
https://www.ncbi.nlm.nih.gov/pubmed/29796187
http://dx.doi.org/10.18632/oncotarget.25297
Descripción
Sumario:TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis by engaging its death receptors (DRs) 4 and/or 5 on targeted cells. Clinical attempts to stimulate this apoptotic pathway for cancer therapy, including the use of recombinant human TRAIL (rhTRAIL) or receptor agonistic antibodies, have been underway for over a decade. Unfortunately, these agents have only shown limited therapeutic effects due largely to tumor resistance arising from mechanisms yet to be defined. Here we show that intermediate filament proteins, keratin 8 and keratin 18 (K8/K18), negatively regulate TRAIL induced apoptosis. K8/K18 protein levels are consistently higher in TRAIL-resistant cells compared to TRAIL-sensitive cells in a panel of breast cancer cell lines. Blockade of K8 increased expression of DR5 on the surface of targeted cells and sensitized the cells to TRAIL-induced apoptosis. Conversely, ectopic expression of K8/K18 downregulated DR5 protein expression. K8/K18 appears to negatively regulate apoptosis signaling via DR5 in breast cancer cells. Our findings warrant additional studies to determine if K8/K18 could be a predictor of tumor resistance to DR5-targeted therapies.