Cargando…
lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling
De novo and acquired resistance, largely attributed to genetic alterations, are barriers to effective anti-EGFR therapy. We generated cetuximab-resistant cells following prolonged cetuximab exposure to cetuximab-sensitive colorectal cancer cells in three-dimensional culture. Through whole exome sequ...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961502/ https://www.ncbi.nlm.nih.gov/pubmed/29035371 http://dx.doi.org/10.1038/nm.4424 |
Sumario: | De novo and acquired resistance, largely attributed to genetic alterations, are barriers to effective anti-EGFR therapy. We generated cetuximab-resistant cells following prolonged cetuximab exposure to cetuximab-sensitive colorectal cancer cells in three-dimensional culture. Through whole exome sequencing and transcriptional profiling, we found overexpression of lncRNA MIR100HG and two embedded miRNAs, miR-100 and miR-125b, in the absence of known genetic events linked to cetuximab resistance. MIR100HG and miR-100/125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100/125b coordinately represses five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. We describe a double-negative feedback loop between MIR100HG and GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These studies identify a clinically actionable, epigenetic cause of cetuximab resistance. |
---|