Cargando…
Pathway choice between proteasomal and autophagic degradation
Efficient degradation of abnormal or aggregated proteins is crucial to protect the cell against proteotoxic stress. Selective targeting and disposal of such proteins usually occurs in a ubiquitin-dependent manner by proteasomes and macroautophagy/autophagy. Whereas proteasomes are efficient in degra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965392/ https://www.ncbi.nlm.nih.gov/pubmed/28813181 http://dx.doi.org/10.1080/15548627.2017.1358851 |
Sumario: | Efficient degradation of abnormal or aggregated proteins is crucial to protect the cell against proteotoxic stress. Selective targeting and disposal of such proteins usually occurs in a ubiquitin-dependent manner by proteasomes and macroautophagy/autophagy. Whereas proteasomes are efficient in degrading abnormal soluble proteins, protein aggregates are typically targeted for degradation by autophagic vesicles. Both processes require ubiquitin-binding receptors, which are targeted to proteasomes via ubiquitin-like domains or to phagophores (the precursors to autophagosomes) via Atg8/LC3 binding motifs, respectively. The use of substrate modification by ubiquitin in both pathways raised the question of how degradative pathway choice is achieved. In contrast to previous models, proposing different types of ubiquitin linkages for substrate targeting, we find that pathway choice is a late event largely determined by the oligomeric state of the receptors. Monomeric proteasome receptors bind soluble substrates more efficiently due to their higher affinity for ubiquitin. Upon substrate aggregation, autophagy receptors with lower ubiquitin binding affinity gain the upper hand due to higher avidity achieved by receptor bundling. Thus, our work suggests that ubiquitination is a shared signal of an adaptive protein quality control system, which targets substrates for the optimal proteolytic pathway. |
---|