Cargando…

Perturbation of the metabolic network in Salmonella enterica reveals cross-talk between coenzyme A and thiamine pathways

Microorganisms respond to a variety of metabolic perturbations by repurposing or recruiting pathways to reroute metabolic flux and overcome the perturbation. Elimination of the 2-dehydropantoate 2-reductase, PanE, both reduces total coenzyme A (CoA) levels and causes a conditional HMP-P auxotrophy i...

Descripción completa

Detalles Bibliográficos
Autores principales: Ernst, Dustin C., Borchert, Andrew J., Downs, Diana M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965847/
https://www.ncbi.nlm.nih.gov/pubmed/29791499
http://dx.doi.org/10.1371/journal.pone.0197703
Descripción
Sumario:Microorganisms respond to a variety of metabolic perturbations by repurposing or recruiting pathways to reroute metabolic flux and overcome the perturbation. Elimination of the 2-dehydropantoate 2-reductase, PanE, both reduces total coenzyme A (CoA) levels and causes a conditional HMP-P auxotrophy in Salmonella enterica. CoA or acetyl-CoA has no demonstrable effect on the HMP-P synthase, ThiC, in vitro. Suppressors aimed at probing the connection between the biosynthesis of thiamine and CoA contained mutations in the gene encoding the ilvC transcriptional regulator, ilvY. These mutations may help inform the structure and mechanism of action for the effector-binding domain, as they represent the first sequenced substitutions in the effector-binding domain of IlvY that cause constitutive expression of ilvC. Since IlvC moonlights as a 2-dehydropantoate 2-reductase, the resultant increase in ilvC transcription increased synthesis of CoA. This study failed to identify mutations overcoming the need for CoA for thiamine synthesis in S. enterica panE mutants, suggesting that a more integrated approach may be necessary to uncover the mechanism connecting CoA and ThiC activity in vivo.