Cargando…
HX-1171 attenuates pancreatic β-cell apoptosis and hyperglycemia-mediated oxidative stress via Nrf2 activation in streptozotocin-induced diabetic model
Streptozotocin (STZ) acts specifically on pancreatic beta cells, inducing cell destruction and cell dysfunction, resulting in diabetes. Many studies have reported that nuclear factor-erythroid 2-related factor 2 (Nrf2), a main regulator of antioxidant expression, prevents and improves diabetes-relat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966269/ https://www.ncbi.nlm.nih.gov/pubmed/29849938 http://dx.doi.org/10.18632/oncotarget.24916 |
Sumario: | Streptozotocin (STZ) acts specifically on pancreatic beta cells, inducing cell destruction and cell dysfunction, resulting in diabetes. Many studies have reported that nuclear factor-erythroid 2-related factor 2 (Nrf2), a main regulator of antioxidant expression, prevents and improves diabetes-related diseases. In this study, we investigated the antidiabetic effect of the newly discovered Nrf2 activator, HX-1171, in the STZ-induced diabetic mouse model. HX-1171 enhanced insulin secretion by reducing STZ-induced cell apoptosis, and decreased intracellular reactive oxygen species (ROS) generation by upregulating the expression of antioxidant enzymes through Nrf2 activation in INS-1 pancreatic beta cells. In STZ-induced diabetic mice, HX-1171 administration significantly lowered blood glucose levels and restored blood insulin levels. In the STZ-only injected mice, the pancreatic islets showed morphological changes and loss of function, whereas the HX-1171-treated group was similar to that of the control group. These results suggest that HX-1171 may be developed as a promising therapeutic agent for diabetes-related diseases. |
---|