Cargando…
A rapid epistatic mixed-model association analysis by linear retransformations of genomic estimated values
MOTIVATION: Epistasis provides a feasible way for probing potential genetic mechanism of complex traits. However, time-consuming computation challenges successful detection of interaction in practice, especially when linear mixed model (LMM) is used to control type I error in the presence of populat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972602/ https://www.ncbi.nlm.nih.gov/pubmed/29342229 http://dx.doi.org/10.1093/bioinformatics/bty017 |
Sumario: | MOTIVATION: Epistasis provides a feasible way for probing potential genetic mechanism of complex traits. However, time-consuming computation challenges successful detection of interaction in practice, especially when linear mixed model (LMM) is used to control type I error in the presence of population structure and cryptic relatedness. RESULTS: A rapid epistatic mixed-model association analysis (REMMA) method was developed to overcome computational limitation. This method first estimates individuals’ epistatic effects by an extended genomic best linear unbiased prediction (EG-BLUP) model with additive and epistatic kinship matrix, then pairwise interaction effects are obtained by linear retransformations of individuals’ epistatic effects. Simulation studies showed that REMMA could control type I error and increase statistical power in detecting epistatic QTNs in comparison with existing LMM-based FaST-LMM. We applied REMMA to two real datasets, a mouse dataset and the Wellcome Trust Case Control Consortium (WTCCC) data. Application to the mouse data further confirmed the performance of REMMA in controlling type I error. For the WTCCC data, we found most epistatic QTNs for type 1 diabetes (T1D) located in a major histocompatibility complex (MHC) region, from which a large interacting network with 12 hub genes (interacting with ten or more genes) was established. AVAILABILITY AND IMPLEMENTATION: Our REMMA method can be freely accessed at https://github.com/chaoning/REMMA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|