Cargando…

The role of HIF-1α in chemo-/radioresistant tumors

Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and o...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Yu, Jiang, Lixia, Zhong, Tianyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973460/
https://www.ncbi.nlm.nih.gov/pubmed/29872312
http://dx.doi.org/10.2147/OTT.S158206
Descripción
Sumario:Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and obvious neoplastic microenvironment and is due to the rapid proliferation of tumor cells. HIF-1α is a principal molecular mediator of adaptability to hypoxia in tumor cells. HIF-1α activation leads to the transcription of a plethora of target genes that promote physiological changes associated with chemo-/radioresistance, including increasing the ability of DNA repair, the inhibition of apoptosis, and alterations of the cellular metabolism. Moreover, recent findings suggest that HIF-1α-activated autophagy is a crucial factor in the promotion of cell survival under the distressed microenvironment, thereby leading to the chemo-/radioresistance. This chapter presents an overview of the role of HIF-1α in chemo-/radioresistance of tumor cells.