Cargando…
The role of HIF-1α in chemo-/radioresistant tumors
Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973460/ https://www.ncbi.nlm.nih.gov/pubmed/29872312 http://dx.doi.org/10.2147/OTT.S158206 |
Sumario: | Chemo-/radioresistance is a major obstacle in clinical oncology. The precise failure mechanisms of chemo-/radioresistance are multifactorial failures. It is now widely accepted that a tumor hypoxia microenvironment contributes significantly to chemo-/radioresistance. Hypoxia is the most common and obvious neoplastic microenvironment and is due to the rapid proliferation of tumor cells. HIF-1α is a principal molecular mediator of adaptability to hypoxia in tumor cells. HIF-1α activation leads to the transcription of a plethora of target genes that promote physiological changes associated with chemo-/radioresistance, including increasing the ability of DNA repair, the inhibition of apoptosis, and alterations of the cellular metabolism. Moreover, recent findings suggest that HIF-1α-activated autophagy is a crucial factor in the promotion of cell survival under the distressed microenvironment, thereby leading to the chemo-/radioresistance. This chapter presents an overview of the role of HIF-1α in chemo-/radioresistance of tumor cells. |
---|