Cargando…
A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
New synthetic biology capabilities hold the promise of dramatically improving our ability to engineer biological systems. However, a fundamental hurdle in realizing this potential is our inability to accurately predict biological behavior after modifying the corresponding genotype. Kinetic models ha...
Autores principales: | Costello, Zak, Martin, Hector Garcia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974308/ https://www.ncbi.nlm.nih.gov/pubmed/29872542 http://dx.doi.org/10.1038/s41540-018-0054-3 |
Ejemplares similares
-
An application of compositional data analysis to multiomic time-series data
por: Sisk-Hackworth, Laura, et al.
Publicado: (2020) -
A machine learning Automated Recommendation Tool for synthetic biology
por: Radivojević, Tijana, et al.
Publicado: (2020) -
Multiomics Data Collection, Visualization, and Utilization for Guiding Metabolic Engineering
por: Roy, Somtirtha, et al.
Publicado: (2021) -
Multiomics and machine learning in lung cancer prognosis
por: Gao, Yanan, et al.
Publicado: (2020) -
Machine Learning-Based Multiomics Prediction Model for Radiation Pneumonitis
por: Zhou, Lu, et al.
Publicado: (2023)