Cargando…
Linking drug target and pathway activation for effective therapy using multi-task learning
Despite the abundance of large-scale molecular and drug-response data, the insights gained about the mechanisms underlying treatment efficacy in cancer has been in general limited. Machine learning algorithms applied to those datasets most often are used to provide predictions without interpretation...
Autores principales: | Yang, Mi, Simm, Jaak, Lam, Chi Chung, Zakeri, Pooya, van Westen, Gerard J. P., Moreau, Yves, Saez-Rodriguez, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974390/ https://www.ncbi.nlm.nih.gov/pubmed/29844324 http://dx.doi.org/10.1038/s41598-018-25947-y |
Ejemplares similares
-
Author Correction: Linking drug target and pathway activation for effective therapy using multi-task learning
por: Yang, Mi, et al.
Publicado: (2019) -
Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information
por: Zakeri, Pooya, et al.
Publicado: (2018) -
An interpretable low-complexity machine learning framework for robust exome-based in-silico diagnosis of Crohn’s disease patients
por: Raimondi, Daniele, et al.
Publicado: (2020) -
Splitting chemical structure data sets for federated privacy-preserving machine learning
por: Simm, Jaak, et al.
Publicado: (2021) -
Protein fold recognition using geometric kernel data fusion
por: Zakeri, Pooya, et al.
Publicado: (2014)