Cargando…

DNA Polymerase Gamma in Mitochondrial DNA Replication and Repair

Mutations in mitochondrial DNA (mtDNA) are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase γ (pol γ) is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful d...

Descripción completa

Detalles Bibliográficos
Autores principales: Copeland, William C., Longley, Matthew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: TheScientificWorldJOURNAL 2003
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974855/
https://www.ncbi.nlm.nih.gov/pubmed/12806118
http://dx.doi.org/10.1100/tsw.2003.09
Descripción
Sumario:Mutations in mitochondrial DNA (mtDNA) are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase γ (pol γ) is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful duplication of mitochondrial DNA, both in preventing spontaneous errors and in DNA repair synthesis, falls on pol γ. Investigating the biological functions of pol γ and its inhibitors aids our understanding of the sources of mtDNA mutations. In animal cells, pol γ is composed of two subunits, a larger catalytic subunit of 125–140 kDa and second subunit of 35–55 kDa. The catalytic subunit contains DNA polymerase activity, 3’-5’ exonuclease activity, and a 5’-dRP lyase activity. The accessory subunit is required for highly processive DNA synthesis and increases the affinity of pol gamma to the DNA.