Cargando…
Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats
In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974923/ https://www.ncbi.nlm.nih.gov/pubmed/29876354 http://dx.doi.org/10.3389/fnut.2018.00042 |
Sumario: | In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina. |
---|