Cargando…

BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path

Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein that is stabilized by three disulfide bonds at positions 5–55, 14–38 and 30–51. Widely studied for about 50 years, BPTI represents a folding model for many disulfide-rich proteins. In the study described below, we replaced the solven...

Descripción completa

Detalles Bibliográficos
Autores principales: Mousa, Reem, Lansky, Shifra, Shoham, Gil, Metanis, Norman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982216/
https://www.ncbi.nlm.nih.gov/pubmed/29910933
http://dx.doi.org/10.1039/c8sc01110a
_version_ 1783328194928050176
author Mousa, Reem
Lansky, Shifra
Shoham, Gil
Metanis, Norman
author_facet Mousa, Reem
Lansky, Shifra
Shoham, Gil
Metanis, Norman
author_sort Mousa, Reem
collection PubMed
description Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein that is stabilized by three disulfide bonds at positions 5–55, 14–38 and 30–51. Widely studied for about 50 years, BPTI represents a folding model for many disulfide-rich proteins. In the study described below, we replaced the solvent exposed 14–38 disulfide bond with a methylene thioacetal bridge in an attempt to arrest the folding pathway of the protein at its two well-known intermediates, N′ and N*. The modified protein was expected to be unable to undergo the rate-determining step in the widely accepted BPTI folding mechanism: the opening of the 14–38 disulfide bond followed by rearrangements that leads to the native state, N. Surprisingly, instead of halting BPTI folding at N′ and N*, we uncovered a hidden pathway involving a direct reaction between the N* intermediate and the oxidizing reagent glutathione (GSSG) to form the disulfide-mixed intermediate N*–SG, which spontaneously folds into N. On the other hand, N′ was unable to fold into N. In addition, we found that the methylene thioacetal bridge enhances BPTI stability while fully maintaining its structure and biological function. These findings suggest a general strategy for enhancing protein stability without compromising on function or structure, suggesting potential applications for future therapeutic protein production.
format Online
Article
Text
id pubmed-5982216
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-59822162018-06-15 BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path Mousa, Reem Lansky, Shifra Shoham, Gil Metanis, Norman Chem Sci Chemistry Bovine pancreatic trypsin inhibitor (BPTI) is a 58-residue protein that is stabilized by three disulfide bonds at positions 5–55, 14–38 and 30–51. Widely studied for about 50 years, BPTI represents a folding model for many disulfide-rich proteins. In the study described below, we replaced the solvent exposed 14–38 disulfide bond with a methylene thioacetal bridge in an attempt to arrest the folding pathway of the protein at its two well-known intermediates, N′ and N*. The modified protein was expected to be unable to undergo the rate-determining step in the widely accepted BPTI folding mechanism: the opening of the 14–38 disulfide bond followed by rearrangements that leads to the native state, N. Surprisingly, instead of halting BPTI folding at N′ and N*, we uncovered a hidden pathway involving a direct reaction between the N* intermediate and the oxidizing reagent glutathione (GSSG) to form the disulfide-mixed intermediate N*–SG, which spontaneously folds into N. On the other hand, N′ was unable to fold into N. In addition, we found that the methylene thioacetal bridge enhances BPTI stability while fully maintaining its structure and biological function. These findings suggest a general strategy for enhancing protein stability without compromising on function or structure, suggesting potential applications for future therapeutic protein production. Royal Society of Chemistry 2018-05-02 /pmc/articles/PMC5982216/ /pubmed/29910933 http://dx.doi.org/10.1039/c8sc01110a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Mousa, Reem
Lansky, Shifra
Shoham, Gil
Metanis, Norman
BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title_full BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title_fullStr BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title_full_unstemmed BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title_short BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
title_sort bpti folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982216/
https://www.ncbi.nlm.nih.gov/pubmed/29910933
http://dx.doi.org/10.1039/c8sc01110a
work_keys_str_mv AT mousareem bptifoldingrevisitedswitchingadisulfideintomethylenethioacetalrevealsapreviouslyhiddenpath
AT lanskyshifra bptifoldingrevisitedswitchingadisulfideintomethylenethioacetalrevealsapreviouslyhiddenpath
AT shohamgil bptifoldingrevisitedswitchingadisulfideintomethylenethioacetalrevealsapreviouslyhiddenpath
AT metanisnorman bptifoldingrevisitedswitchingadisulfideintomethylenethioacetalrevealsapreviouslyhiddenpath