Cargando…

Identification of unusual oxysterols and bile acids with 7-oxo or 3β,5α,6β-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation

7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3β,5α,6β-triol (3β,5α,6β-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysoso...

Descripción completa

Detalles Bibliográficos
Autores principales: Griffiths, William J., Gilmore, Ian, Yutuc, Eylan, Abdel-Khalik, Jonas, Crick, Peter J., Hearn, Thomas, Dickson, Alison, Bigger, Brian W., Wu, Teresa Hoi-Yee, Goenka, Anu, Ghosh, Arunabha, Jones, Simon A., Wang, Yuqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Biochemistry and Molecular Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983402/
https://www.ncbi.nlm.nih.gov/pubmed/29626102
http://dx.doi.org/10.1194/jlr.D083246
Descripción
Sumario:7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3β,5α,6β-triol (3β,5α,6β-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders, e.g., Niemann-Pick disease type C, or the inborn errors of sterol metabolism, e.g., Smith-Lemli-Opitz syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that they can also be formed ex vivo from cholesterol during sample handling in air, causing confusion with molecules formed in vivo. When formed endogenously, 7-OC, 5,6-EC, and 3β,5α,6β-triol can be converted to bile acids. Here, we describe methodology based on chemical derivatization and LC/MS with multistage fragmentation (MS(n)) to identify the necessary intermediates in the conversion of 7-OC to 3β-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3β,5α,6β-triol to 3β,5α,6β-trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MS(n) fragmentation patterns. Semiquantitative measurements are possible, but absolute values await the synthesis of isotope-labeled standards.