Cargando…

Variable termination sites of DNA polymerases encountering a DNA–protein cross-link

DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere w...

Descripción completa

Detalles Bibliográficos
Autores principales: Yudkina, Anna V., Dvornikova, Antonina P., Zharkov, Dmitry O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983568/
https://www.ncbi.nlm.nih.gov/pubmed/29856874
http://dx.doi.org/10.1371/journal.pone.0198480
_version_ 1783328447143084032
author Yudkina, Anna V.
Dvornikova, Antonina P.
Zharkov, Dmitry O.
author_facet Yudkina, Anna V.
Dvornikova, Antonina P.
Zharkov, Dmitry O.
author_sort Yudkina, Anna V.
collection PubMed
description DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH(4)-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4–5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule.
format Online
Article
Text
id pubmed-5983568
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-59835682018-06-16 Variable termination sites of DNA polymerases encountering a DNA–protein cross-link Yudkina, Anna V. Dvornikova, Antonina P. Zharkov, Dmitry O. PLoS One Research Article DNA-protein cross-links (DPCs) are important DNA lesions induced by endogenous crosslinking agents such as formaldehyde or acetaldehyde, as well as ionizing radiation, cancer chemotherapeutic drugs, and abortive action of some enzymes. Due to their very bulky nature, they are expected to interfere with DNA and RNA synthesis and DNA repair. DPCs are highly genotoxic and the ability of cells to deal with them is relevant for many chemotherapeutic interventions. However, interactions of DNA polymerases with DPCs have been poorly studied due to the lack of a convenient experimental model. We have used NaBH(4)-induced trapping of E. coli formamidopyrimidine-DNA glycosylase with DNA to construct model DNA polymerase substrates containing a DPC in single-stranded template, or in the template strand of double-stranded DNA, or in the non-template (displaced) strand of double-stranded DNA. Nine DNA polymerases belonging to families A, B, X, and Y were studied with respect to their behavior upon encountering a DPC: Klenow fragment of E. coli DNA polymerase I, Thermus aquaticus DNA polymerase I, Pyrococcus furiosus DNA polymerase, Sulfolobus solfataricus DNA polymerase IV, human DNA polymerases β, κ and λ, and DNA polymerases from bacteriophages T4 and RB69. Although none were able to fully bypass DPCs in any context, Family B DNA polymerases (T4, RB69) and Family Y DNA polymerase IV were able to elongate the primer up to the site of the cross-link if a DPC was located in single-stranded template or in the displaced strand. In other cases, DNA synthesis stopped 4–5 nucleotides before the site of the cross-link in single-stranded template or in double-stranded DNA if the polymerases could displace the downstream strand. We suggest that termination of DNA polymerases on a DPC is mostly due to the unrelieved conformational strain experienced by the enzyme when pressing against the cross-linked protein molecule. Public Library of Science 2018-06-01 /pmc/articles/PMC5983568/ /pubmed/29856874 http://dx.doi.org/10.1371/journal.pone.0198480 Text en © 2018 Yudkina et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Yudkina, Anna V.
Dvornikova, Antonina P.
Zharkov, Dmitry O.
Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title_full Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title_fullStr Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title_full_unstemmed Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title_short Variable termination sites of DNA polymerases encountering a DNA–protein cross-link
title_sort variable termination sites of dna polymerases encountering a dna–protein cross-link
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983568/
https://www.ncbi.nlm.nih.gov/pubmed/29856874
http://dx.doi.org/10.1371/journal.pone.0198480
work_keys_str_mv AT yudkinaannav variableterminationsitesofdnapolymerasesencounteringadnaproteincrosslink
AT dvornikovaantoninap variableterminationsitesofdnapolymerasesencounteringadnaproteincrosslink
AT zharkovdmitryo variableterminationsitesofdnapolymerasesencounteringadnaproteincrosslink