Cargando…
UMI-count modeling and differential expression analysis for single-cell RNA sequencing
Read counting and unique molecular identifier (UMI) counting are the principal gene expression quantification schemes used in single-cell RNA-sequencing (scRNA-seq) analysis. By using multiple scRNA-seq datasets, we reveal distinct distribution differences between these schemes and conclude that the...
Autores principales: | Chen, Wenan, Li, Yan, Easton, John, Finkelstein, David, Wu, Gang, Chen, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984373/ https://www.ncbi.nlm.nih.gov/pubmed/29855333 http://dx.doi.org/10.1186/s13059-018-1438-9 |
Ejemplares similares
-
A comparison of methods accounting for batch effects in differential expression analysis of UMI count based single cell RNA sequencing
por: Chen, Wenan, et al.
Publicado: (2020) -
UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy
por: Smith, Tom, et al.
Publicado: (2017) -
zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs
por: Parekh, Swati, et al.
Publicado: (2018) -
Differential expression analysis for sequence count data
por: Anders, Simon, et al.
Publicado: (2010) -
Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data
por: Cheng, Changde, et al.
Publicado: (2019)