Cargando…
Temporospatial induction of homeodomain gene cut dictates natural lineage reprogramming
Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986271/ https://www.ncbi.nlm.nih.gov/pubmed/29714689 http://dx.doi.org/10.7554/eLife.33934 |
Sumario: | Understanding how cellular identity naturally interconverts with high efficiency and temporospatial precision is crucial for regenerative medicine. Here, we revealed a natural midgut-to-renal lineage conversion event during Drosophila metamorphosis and identified the evolutionarily-conserved homeodomain protein Cut as a master switch in this process. A steep Wnt/Wingless morphogen gradient intersects with a pulse of steroid hormone ecdysone to induce cut expression in a subset of midgut progenitors and reprogram them into renal progenitors. Molecularly, ecdysone-induced temporal factor Broad physically interacts with cut enhancer-bound Wnt pathway effector TCF/β-catenin and likely bridges the distant enhancer and promoter region of cut through its self-association. Such long-range enhancer-promoter looping could subsequently trigger timely cut transcription. Our results therefore led us to propose an unexpected poising-and-bridging mechanism whereby spatial and temporal cues intersect, likely via chromatin looping, to turn on a master transcription factor and dictate efficient and precise lineage reprogramming. |
---|