Cargando…

Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction

Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernhardt, Paul V., Bilyj, Jessica K., Brosius, Victor, Chernyshov, Dmitry, Deeth, Robert J., Foscato, Marco, Jensen, Vidar R., Mertes, Nicole, Riley, Mark J., Törnroos, Karl W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988046/
https://www.ncbi.nlm.nih.gov/pubmed/29315883
http://dx.doi.org/10.1002/chem.201705439
_version_ 1783329220791894016
author Bernhardt, Paul V.
Bilyj, Jessica K.
Brosius, Victor
Chernyshov, Dmitry
Deeth, Robert J.
Foscato, Marco
Jensen, Vidar R.
Mertes, Nicole
Riley, Mark J.
Törnroos, Karl W.
author_facet Bernhardt, Paul V.
Bilyj, Jessica K.
Brosius, Victor
Chernyshov, Dmitry
Deeth, Robert J.
Foscato, Marco
Jensen, Vidar R.
Mertes, Nicole
Riley, Mark J.
Törnroos, Karl W.
author_sort Bernhardt, Paul V.
collection PubMed
description Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T (1/2)=140 K. Single crystal, variable‐temperature optical spectroscopy of [Fe(II)(tame)(2)]Cl(2)⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [Fe(II)(tame)(2)](2+) during its de novo artificial evolution design as a spin‐crossover complex [Chem. Inf. Model. 2015, 55, 1844], offering the first experimental validation of a functional transition‐metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin‐passive structural components. A thermodynamic analysis based on an Ising‐like mean field model (Slichter–Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states.
format Online
Article
Text
id pubmed-5988046
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59880462018-06-20 Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction Bernhardt, Paul V. Bilyj, Jessica K. Brosius, Victor Chernyshov, Dmitry Deeth, Robert J. Foscato, Marco Jensen, Vidar R. Mertes, Nicole Riley, Mark J. Törnroos, Karl W. Chemistry Communications Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T (1/2)=140 K. Single crystal, variable‐temperature optical spectroscopy of [Fe(II)(tame)(2)]Cl(2)⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [Fe(II)(tame)(2)](2+) during its de novo artificial evolution design as a spin‐crossover complex [Chem. Inf. Model. 2015, 55, 1844], offering the first experimental validation of a functional transition‐metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin‐passive structural components. A thermodynamic analysis based on an Ising‐like mean field model (Slichter–Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states. John Wiley and Sons Inc. 2018-01-29 2018-04-06 /pmc/articles/PMC5988046/ /pubmed/29315883 http://dx.doi.org/10.1002/chem.201705439 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Bernhardt, Paul V.
Bilyj, Jessica K.
Brosius, Victor
Chernyshov, Dmitry
Deeth, Robert J.
Foscato, Marco
Jensen, Vidar R.
Mertes, Nicole
Riley, Mark J.
Törnroos, Karl W.
Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title_full Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title_fullStr Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title_full_unstemmed Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title_short Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
title_sort spin crossover in a hexaamineiron(ii) complex: experimental confirmation of a computational prediction
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988046/
https://www.ncbi.nlm.nih.gov/pubmed/29315883
http://dx.doi.org/10.1002/chem.201705439
work_keys_str_mv AT bernhardtpaulv spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT bilyjjessicak spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT brosiusvictor spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT chernyshovdmitry spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT deethrobertj spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT foscatomarco spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT jensenvidarr spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT mertesnicole spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT rileymarkj spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction
AT tornrooskarlw spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction