Cargando…
Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction
Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988046/ https://www.ncbi.nlm.nih.gov/pubmed/29315883 http://dx.doi.org/10.1002/chem.201705439 |
_version_ | 1783329220791894016 |
---|---|
author | Bernhardt, Paul V. Bilyj, Jessica K. Brosius, Victor Chernyshov, Dmitry Deeth, Robert J. Foscato, Marco Jensen, Vidar R. Mertes, Nicole Riley, Mark J. Törnroos, Karl W. |
author_facet | Bernhardt, Paul V. Bilyj, Jessica K. Brosius, Victor Chernyshov, Dmitry Deeth, Robert J. Foscato, Marco Jensen, Vidar R. Mertes, Nicole Riley, Mark J. Törnroos, Karl W. |
author_sort | Bernhardt, Paul V. |
collection | PubMed |
description | Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T (1/2)=140 K. Single crystal, variable‐temperature optical spectroscopy of [Fe(II)(tame)(2)]Cl(2)⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [Fe(II)(tame)(2)](2+) during its de novo artificial evolution design as a spin‐crossover complex [Chem. Inf. Model. 2015, 55, 1844], offering the first experimental validation of a functional transition‐metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin‐passive structural components. A thermodynamic analysis based on an Ising‐like mean field model (Slichter–Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states. |
format | Online Article Text |
id | pubmed-5988046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59880462018-06-20 Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction Bernhardt, Paul V. Bilyj, Jessica K. Brosius, Victor Chernyshov, Dmitry Deeth, Robert J. Foscato, Marco Jensen, Vidar R. Mertes, Nicole Riley, Mark J. Törnroos, Karl W. Chemistry Communications Single crystal structural analysis of [Fe(II)(tame)(2)]Cl(2)⋅MeOH (tame=1,1,1‐tris(aminomethyl)ethane) as a function of temperature reveals a smooth crossover between a high temperature high‐spin octahedral d (6) state and a low temperature low‐spin ground state without change of the symmetry of the crystal structure. The temperature at which the high and low spin states are present in equal proportions is T (1/2)=140 K. Single crystal, variable‐temperature optical spectroscopy of [Fe(II)(tame)(2)]Cl(2)⋅MeOH is consistent with this change in electronic ground state. These experimental results confirm the spin activity predicted for [Fe(II)(tame)(2)](2+) during its de novo artificial evolution design as a spin‐crossover complex [Chem. Inf. Model. 2015, 55, 1844], offering the first experimental validation of a functional transition‐metal complex predicted by such in silico molecular design methods. Additional quantum chemical calculations offer, together with the crystal structure analysis, insight into the role of spin‐passive structural components. A thermodynamic analysis based on an Ising‐like mean field model (Slichter–Drickammer approximation) provides estimates of the enthalpy, entropy and cooperativity of the crossover between the high and low spin states. John Wiley and Sons Inc. 2018-01-29 2018-04-06 /pmc/articles/PMC5988046/ /pubmed/29315883 http://dx.doi.org/10.1002/chem.201705439 Text en © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Bernhardt, Paul V. Bilyj, Jessica K. Brosius, Victor Chernyshov, Dmitry Deeth, Robert J. Foscato, Marco Jensen, Vidar R. Mertes, Nicole Riley, Mark J. Törnroos, Karl W. Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title | Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title_full | Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title_fullStr | Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title_full_unstemmed | Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title_short | Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction |
title_sort | spin crossover in a hexaamineiron(ii) complex: experimental confirmation of a computational prediction |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988046/ https://www.ncbi.nlm.nih.gov/pubmed/29315883 http://dx.doi.org/10.1002/chem.201705439 |
work_keys_str_mv | AT bernhardtpaulv spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT bilyjjessicak spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT brosiusvictor spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT chernyshovdmitry spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT deethrobertj spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT foscatomarco spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT jensenvidarr spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT mertesnicole spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT rileymarkj spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction AT tornrooskarlw spincrossoverinahexaamineironiicomplexexperimentalconfirmationofacomputationalprediction |