Cargando…
Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome sc...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988505/ https://www.ncbi.nlm.nih.gov/pubmed/29900118 http://dx.doi.org/10.1016/j.euprot.2016.09.001 |
_version_ | 1783329297314873344 |
---|---|
author | Kondrakhin, Yu. Valeev, T. Sharipov, R. Yevshin, I. Kolpakov, F. Kel, A. |
author_facet | Kondrakhin, Yu. Valeev, T. Sharipov, R. Yevshin, I. Kolpakov, F. Kel, A. |
author_sort | Kondrakhin, Yu. |
collection | PubMed |
description | We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world. |
format | Online Article Text |
id | pubmed-5988505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59885052018-06-13 Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data Kondrakhin, Yu. Valeev, T. Sharipov, R. Yevshin, I. Kolpakov, F. Kel, A. EuPA Open Proteom Regular Article We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world. Elsevier 2016-09-15 /pmc/articles/PMC5988505/ /pubmed/29900118 http://dx.doi.org/10.1016/j.euprot.2016.09.001 Text en © 2016 Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Regular Article Kondrakhin, Yu. Valeev, T. Sharipov, R. Yevshin, I. Kolpakov, F. Kel, A. Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title | Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title_full | Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title_fullStr | Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title_full_unstemmed | Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title_short | Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data |
title_sort | prediction of protein-dna interactions of transcription factors linking proteomics and transcriptomics data |
topic | Regular Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988505/ https://www.ncbi.nlm.nih.gov/pubmed/29900118 http://dx.doi.org/10.1016/j.euprot.2016.09.001 |
work_keys_str_mv | AT kondrakhinyu predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata AT valeevt predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata AT sharipovr predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata AT yevshini predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata AT kolpakovf predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata AT kela predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata |