Cargando…

Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data

We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome sc...

Descripción completa

Detalles Bibliográficos
Autores principales: Kondrakhin, Yu., Valeev, T., Sharipov, R., Yevshin, I., Kolpakov, F., Kel, A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988505/
https://www.ncbi.nlm.nih.gov/pubmed/29900118
http://dx.doi.org/10.1016/j.euprot.2016.09.001
_version_ 1783329297314873344
author Kondrakhin, Yu.
Valeev, T.
Sharipov, R.
Yevshin, I.
Kolpakov, F.
Kel, A.
author_facet Kondrakhin, Yu.
Valeev, T.
Sharipov, R.
Yevshin, I.
Kolpakov, F.
Kel, A.
author_sort Kondrakhin, Yu.
collection PubMed
description We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world.
format Online
Article
Text
id pubmed-5988505
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-59885052018-06-13 Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data Kondrakhin, Yu. Valeev, T. Sharipov, R. Yevshin, I. Kolpakov, F. Kel, A. EuPA Open Proteom Regular Article We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world. Elsevier 2016-09-15 /pmc/articles/PMC5988505/ /pubmed/29900118 http://dx.doi.org/10.1016/j.euprot.2016.09.001 Text en © 2016 Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Regular Article
Kondrakhin, Yu.
Valeev, T.
Sharipov, R.
Yevshin, I.
Kolpakov, F.
Kel, A.
Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title_full Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title_fullStr Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title_full_unstemmed Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title_short Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data
title_sort prediction of protein-dna interactions of transcription factors linking proteomics and transcriptomics data
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988505/
https://www.ncbi.nlm.nih.gov/pubmed/29900118
http://dx.doi.org/10.1016/j.euprot.2016.09.001
work_keys_str_mv AT kondrakhinyu predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata
AT valeevt predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata
AT sharipovr predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata
AT yevshini predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata
AT kolpakovf predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata
AT kela predictionofproteindnainteractionsoftranscriptionfactorslinkingproteomicsandtranscriptomicsdata