Cargando…
Discovering mutated driver genes through a robust and sparse co-regularized matrix factorization framework with prior information from mRNA expression patterns and interaction network
BACKGROUND: Discovery of mutated driver genes is one of the primary objective for studying tumorigenesis. To discover some relatively low frequently mutated driver genes from somatic mutation data, many existing methods incorporate interaction network as prior information. However, the prior informa...
Autores principales: | Xi, Jianing, Wang, Minghui, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989443/ https://www.ncbi.nlm.nih.gov/pubmed/29871594 http://dx.doi.org/10.1186/s12859-018-2218-y |
Ejemplares similares
-
Correntropy induced loss based sparse robust graph regularized extreme learning machine for cancer classification
por: Ren, Liang-Rui, et al.
Publicado: (2020) -
Robust sparse canonical correlation analysis
por: Wilms, Ines, et al.
Publicado: (2016) -
A novel network regularized matrix decomposition method to detect mutated cancer genes in tumour samples with inter-patient heterogeneity
por: Xi, Jianing, et al.
Publicado: (2017) -
Robust priors for regularized regression
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2022) -
Reliable heritability estimation using sparse regularization in ultrahigh dimensional genome-wide association studies
por: Li, Xin, et al.
Publicado: (2019)