Cargando…

Improvement of the selectivity of isophorone hydrogenation by Lewis acids

The selective hydrogenation of isophorone (3,5,5-trimethyl-2- cyclohexen-1-one) to produce 3,3,5-trimethylcyclohexanone (TMCH), an important organic solvent and pharmaceutical intermediate, is of significance in industry. However, the over-hydrogenation to produce the by-product 3,3,5-trimethylcyclo...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Yucui, Ren, Shuhang, Niu, Muge, Wu, Weize
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990831/
https://www.ncbi.nlm.nih.gov/pubmed/29892356
http://dx.doi.org/10.1098/rsos.171523
Descripción
Sumario:The selective hydrogenation of isophorone (3,5,5-trimethyl-2- cyclohexen-1-one) to produce 3,3,5-trimethylcyclohexanone (TMCH), an important organic solvent and pharmaceutical intermediate, is of significance in industry. However, the over-hydrogenation to produce the by-product 3,3,5-trimethylcyclohexanol causes issues. Up to now, it is still a challenge to hydrogenate isophorone to TMCH with high selectivity. In this work, we found that Lewis acids could inhibit the hydrogenation of C=O bond on isophorone, thus greatly improving the selectivity towards TMCH. In addition, added solvents like supercritical CO(2) also had a positive impact on the selectivity. Both the conversion and selectivity could be increased to more than 99% when suitable Lewis acid and solvent were employed. Nevertheless, Lewis acid also exhibited some inhibition on the hydrogenation of the C=C bond of isophorone. Hence, a relatively weak Lewis acid, ZnCl(2), is suitable for the selective hydrogenation.