Cargando…
Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury
After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels,...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992461/ https://www.ncbi.nlm.nih.gov/pubmed/29858074 http://dx.doi.org/10.1016/j.omtn.2018.03.009 |
_version_ | 1783330038502916096 |
---|---|
author | Moreno, Pedro M.D. Ferreira, Ana R. Salvador, Daniela Rodrigues, Maria T. Torrado, Marília Carvalho, Eva D. Tedebark, Ulf Sousa, Mónica M. Amaral, Isabel F. Wengel, Jesper Pêgo, Ana P. |
author_facet | Moreno, Pedro M.D. Ferreira, Ana R. Salvador, Daniela Rodrigues, Maria T. Torrado, Marília Carvalho, Eva D. Tedebark, Ulf Sousa, Mónica M. Amaral, Isabel F. Wengel, Jesper Pêgo, Ana P. |
author_sort | Moreno, Pedro M.D. |
collection | PubMed |
description | After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3β. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration. |
format | Online Article Text |
id | pubmed-5992461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-59924612018-06-11 Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury Moreno, Pedro M.D. Ferreira, Ana R. Salvador, Daniela Rodrigues, Maria T. Torrado, Marília Carvalho, Eva D. Tedebark, Ulf Sousa, Mónica M. Amaral, Isabel F. Wengel, Jesper Pêgo, Ana P. Mol Ther Nucleic Acids Article After spinal cord injury (SCI), nerve regeneration is severely hampered due to the establishment of a highly inhibitory microenvironment at the injury site, through the contribution of multiple factors. The potential of antisense oligonucleotides (AONs) to modify gene expression at different levels, allowing the regulation of cell survival and cell function, together with the availability of chemically modified nucleic acids with favorable biopharmaceutical properties, make AONs an attractive tool for novel SCI therapy developments. In this work, we explored the potential of locked nucleic acid (LNA)-modified AON gapmers in combination with a fibrin hydrogel bridging material to induce gene silencing in situ at a SCI lesion site. LNA gapmers were effectively developed against two promising gene targets aiming at enhancing axonal regeneration—RhoA and GSK3β. The fibrin-matrix-assisted AON delivery system mediated potent RNA knockdown in vitro in a dorsal root ganglion explant culture system and in vivo at a SCI lesion site, achieving around 75% downregulation 5 days after hydrogel injection. Our results show that local implantation of a AON-gapmer-loaded hydrogel matrix mediated efficient gene silencing in the lesioned spinal cord and is an innovative platform that can potentially combine gene regulation with regenerative permissive substrates aiming at SCI therapeutics and nerve regeneration. American Society of Gene & Cell Therapy 2018-03-20 /pmc/articles/PMC5992461/ /pubmed/29858074 http://dx.doi.org/10.1016/j.omtn.2018.03.009 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Moreno, Pedro M.D. Ferreira, Ana R. Salvador, Daniela Rodrigues, Maria T. Torrado, Marília Carvalho, Eva D. Tedebark, Ulf Sousa, Mónica M. Amaral, Isabel F. Wengel, Jesper Pêgo, Ana P. Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title_full | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title_fullStr | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title_full_unstemmed | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title_short | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury |
title_sort | hydrogel-assisted antisense lna gapmer delivery for in situ gene silencing in spinal cord injury |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992461/ https://www.ncbi.nlm.nih.gov/pubmed/29858074 http://dx.doi.org/10.1016/j.omtn.2018.03.009 |
work_keys_str_mv | AT morenopedromd hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT ferreiraanar hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT salvadordaniela hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT rodriguesmariat hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT torradomarilia hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT carvalhoevad hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT tedebarkulf hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT sousamonicam hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT amaralisabelf hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT wengeljesper hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury AT pegoanap hydrogelassistedantisenselnagapmerdeliveryforinsitugenesilencinginspinalcordinjury |