Cargando…

Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking

In long-term potentiation (LTP), one of the most studied types of neural plasticity, synaptic strength is persistently increased in response to stimulation. Although a number of different proteins have been implicated in the sub-cellular molecular processes underlying induction and maintenance of LT...

Descripción completa

Detalles Bibliográficos
Autores principales: Helfer, Peter, Shultz, Thomas R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993340/
https://www.ncbi.nlm.nih.gov/pubmed/29813048
http://dx.doi.org/10.1371/journal.pcbi.1006147
_version_ 1783330232023908352
author Helfer, Peter
Shultz, Thomas R.
author_facet Helfer, Peter
Shultz, Thomas R.
author_sort Helfer, Peter
collection PubMed
description In long-term potentiation (LTP), one of the most studied types of neural plasticity, synaptic strength is persistently increased in response to stimulation. Although a number of different proteins have been implicated in the sub-cellular molecular processes underlying induction and maintenance of LTP, the precise mechanisms remain unknown. A particular challenge is to demonstrate that a proposed molecular mechanism can provide the level of stability needed to maintain memories for months or longer, in spite of the fact that many of the participating molecules have much shorter life spans. Here we present a computational model that combines simulations of several biochemical reactions that have been suggested in the LTP literature and show that the resulting system does exhibit the required stability. At the core of the model are two interlinked feedback loops of molecular reactions, one involving the atypical protein kinase PKMζ and its messenger RNA, the other involving PKMζ and GluA2-containing AMPA receptors. We demonstrate that robust bistability–stable equilibria both in the synapse’s potentiated and unpotentiated states–can arise from a set of simple molecular reactions. The model is able to account for a wide range of empirical results, including induction and maintenance of late-phase LTP, cellular memory reconsolidation and the effects of different pharmaceutical interventions.
format Online
Article
Text
id pubmed-5993340
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-59933402018-06-17 Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking Helfer, Peter Shultz, Thomas R. PLoS Comput Biol Research Article In long-term potentiation (LTP), one of the most studied types of neural plasticity, synaptic strength is persistently increased in response to stimulation. Although a number of different proteins have been implicated in the sub-cellular molecular processes underlying induction and maintenance of LTP, the precise mechanisms remain unknown. A particular challenge is to demonstrate that a proposed molecular mechanism can provide the level of stability needed to maintain memories for months or longer, in spite of the fact that many of the participating molecules have much shorter life spans. Here we present a computational model that combines simulations of several biochemical reactions that have been suggested in the LTP literature and show that the resulting system does exhibit the required stability. At the core of the model are two interlinked feedback loops of molecular reactions, one involving the atypical protein kinase PKMζ and its messenger RNA, the other involving PKMζ and GluA2-containing AMPA receptors. We demonstrate that robust bistability–stable equilibria both in the synapse’s potentiated and unpotentiated states–can arise from a set of simple molecular reactions. The model is able to account for a wide range of empirical results, including induction and maintenance of late-phase LTP, cellular memory reconsolidation and the effects of different pharmaceutical interventions. Public Library of Science 2018-05-29 /pmc/articles/PMC5993340/ /pubmed/29813048 http://dx.doi.org/10.1371/journal.pcbi.1006147 Text en © 2018 Helfer, Shultz http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Helfer, Peter
Shultz, Thomas R.
Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title_full Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title_fullStr Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title_full_unstemmed Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title_short Coupled feedback loops maintain synaptic long-term potentiation: A computational model of PKMzeta synthesis and AMPA receptor trafficking
title_sort coupled feedback loops maintain synaptic long-term potentiation: a computational model of pkmzeta synthesis and ampa receptor trafficking
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993340/
https://www.ncbi.nlm.nih.gov/pubmed/29813048
http://dx.doi.org/10.1371/journal.pcbi.1006147
work_keys_str_mv AT helferpeter coupledfeedbackloopsmaintainsynapticlongtermpotentiationacomputationalmodelofpkmzetasynthesisandampareceptortrafficking
AT shultzthomasr coupledfeedbackloopsmaintainsynapticlongtermpotentiationacomputationalmodelofpkmzetasynthesisandampareceptortrafficking