Cargando…
Proangiogenic Interactions of Vascular Endothelial MMP14 With VEGF Receptor 1 in VEGFA-Mediated Corneal Angiogenesis
PURPOSE: Matrix metalloproteinase 14 (MMP14) has been shown to be required for corneal angiogenesis. We hypothesized that the proangiogenic activity of MMP14 may be based on its selective binding to, and cleaving of, vascular endothelial growth factor receptor 1 (VEGFR1), but not VEGFR2 or VEGFR3. M...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993529/ https://www.ncbi.nlm.nih.gov/pubmed/27327585 http://dx.doi.org/10.1167/iovs.16-19420 |
Sumario: | PURPOSE: Matrix metalloproteinase 14 (MMP14) has been shown to be required for corneal angiogenesis. We hypothesized that the proangiogenic activity of MMP14 may be based on its selective binding to, and cleaving of, vascular endothelial growth factor receptor 1 (VEGFR1), but not VEGFR2 or VEGFR3. METHODS: Recombinant human (rh)VEGFR1, R2, and R3 were incubated with human MMP14, and the reaction mixtures were analyzed by SDS-PAGE and Coomassie blue staining. Surface plasmon resonance was used to determine the equilibrium constants (K(D)) for binding between MMP14 and VEGFA versus rhVEGFR1, R2, and R3. Extracellular signal-regulated kinase (ERK) phosphorylation was assayed in vascular endothelial cells after incubation with VEGF and various concentrations of MMP14. Ex vivo aortic ring tube formation assays and VEGFA micropocket corneal neovascularization assays were performed using Flk1Cre/Flk1mCherry/MMP14lox and Flk1mCherry/MMP14lox control mice. RESULTS: Maxtrix metalloproteinase 14 increased VEGFA-induced ERK phosphorylation in a time- and concentration-dependent manner in vascular endothelial cells. Aortic ring assays showed diminished vessel sprouting in vitro in response to VEGFA, but not to basic fibroblast growth factor, in mice with conditional deletion of vascular MMP14 (Flk1creMMP14lox) compared with that in MMP14lox control mice. In addition, diminished VEGFA-induced corneal angiogenesis was seen in flk1creMMP14lox mice compared with MMP14lox mice in vivo. CONCLUSIONS: Our findings indicate that VEGFR1 interaction with MMP14 and the enzymatic activity of MMP14 are necessary for VEGFA-induced angiogenesis. Additionally, selective cleavage of VEGFR1 by MMP14 may play an important role in VEGFA-induced corneal angiogenesis. |
---|