Cargando…
A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995932/ https://www.ncbi.nlm.nih.gov/pubmed/29891868 http://dx.doi.org/10.1038/s41598-018-27189-4 |
Sumario: | Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma. |
---|