Cargando…
A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995932/ https://www.ncbi.nlm.nih.gov/pubmed/29891868 http://dx.doi.org/10.1038/s41598-018-27189-4 |
_version_ | 1783330709818048512 |
---|---|
author | Pandey, Gaurav Pandey, Om P. Rogers, Angela J. Ahsen, Mehmet E. Hoffman, Gabriel E. Raby, Benjamin A. Weiss, Scott T. Schadt, Eric E. Bunyavanich, Supinda |
author_facet | Pandey, Gaurav Pandey, Om P. Rogers, Angela J. Ahsen, Mehmet E. Hoffman, Gabriel E. Raby, Benjamin A. Weiss, Scott T. Schadt, Eric E. Bunyavanich, Supinda |
author_sort | Pandey, Gaurav |
collection | PubMed |
description | Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma. |
format | Online Article Text |
id | pubmed-5995932 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59959322018-06-21 A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data Pandey, Gaurav Pandey, Om P. Rogers, Angela J. Ahsen, Mehmet E. Hoffman, Gabriel E. Raby, Benjamin A. Weiss, Scott T. Schadt, Eric E. Bunyavanich, Supinda Sci Rep Article Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma. Nature Publishing Group UK 2018-06-11 /pmc/articles/PMC5995932/ /pubmed/29891868 http://dx.doi.org/10.1038/s41598-018-27189-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Pandey, Gaurav Pandey, Om P. Rogers, Angela J. Ahsen, Mehmet E. Hoffman, Gabriel E. Raby, Benjamin A. Weiss, Scott T. Schadt, Eric E. Bunyavanich, Supinda A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title | A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title_full | A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title_fullStr | A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title_full_unstemmed | A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title_short | A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data |
title_sort | nasal brush-based classifier of asthma identified by machine learning analysis of nasal rna sequence data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995932/ https://www.ncbi.nlm.nih.gov/pubmed/29891868 http://dx.doi.org/10.1038/s41598-018-27189-4 |
work_keys_str_mv | AT pandeygaurav anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT pandeyomp anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT rogersangelaj anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT ahsenmehmete anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT hoffmangabriele anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT rabybenjamina anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT weissscottt anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT schadterice anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT bunyavanichsupinda anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT pandeygaurav nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT pandeyomp nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT rogersangelaj nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT ahsenmehmete nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT hoffmangabriele nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT rabybenjamina nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT weissscottt nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT schadterice nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata AT bunyavanichsupinda nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata |