Cargando…

A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data

Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandey, Gaurav, Pandey, Om P., Rogers, Angela J., Ahsen, Mehmet E., Hoffman, Gabriel E., Raby, Benjamin A., Weiss, Scott T., Schadt, Eric E., Bunyavanich, Supinda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995932/
https://www.ncbi.nlm.nih.gov/pubmed/29891868
http://dx.doi.org/10.1038/s41598-018-27189-4
_version_ 1783330709818048512
author Pandey, Gaurav
Pandey, Om P.
Rogers, Angela J.
Ahsen, Mehmet E.
Hoffman, Gabriel E.
Raby, Benjamin A.
Weiss, Scott T.
Schadt, Eric E.
Bunyavanich, Supinda
author_facet Pandey, Gaurav
Pandey, Om P.
Rogers, Angela J.
Ahsen, Mehmet E.
Hoffman, Gabriel E.
Raby, Benjamin A.
Weiss, Scott T.
Schadt, Eric E.
Bunyavanich, Supinda
author_sort Pandey, Gaurav
collection PubMed
description Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma.
format Online
Article
Text
id pubmed-5995932
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59959322018-06-21 A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data Pandey, Gaurav Pandey, Om P. Rogers, Angela J. Ahsen, Mehmet E. Hoffman, Gabriel E. Raby, Benjamin A. Weiss, Scott T. Schadt, Eric E. Bunyavanich, Supinda Sci Rep Article Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma. Nature Publishing Group UK 2018-06-11 /pmc/articles/PMC5995932/ /pubmed/29891868 http://dx.doi.org/10.1038/s41598-018-27189-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Pandey, Gaurav
Pandey, Om P.
Rogers, Angela J.
Ahsen, Mehmet E.
Hoffman, Gabriel E.
Raby, Benjamin A.
Weiss, Scott T.
Schadt, Eric E.
Bunyavanich, Supinda
A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title_full A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title_fullStr A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title_full_unstemmed A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title_short A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data
title_sort nasal brush-based classifier of asthma identified by machine learning analysis of nasal rna sequence data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5995932/
https://www.ncbi.nlm.nih.gov/pubmed/29891868
http://dx.doi.org/10.1038/s41598-018-27189-4
work_keys_str_mv AT pandeygaurav anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT pandeyomp anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT rogersangelaj anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT ahsenmehmete anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT hoffmangabriele anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT rabybenjamina anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT weissscottt anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT schadterice anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT bunyavanichsupinda anasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT pandeygaurav nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT pandeyomp nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT rogersangelaj nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT ahsenmehmete nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT hoffmangabriele nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT rabybenjamina nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT weissscottt nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT schadterice nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata
AT bunyavanichsupinda nasalbrushbasedclassifierofasthmaidentifiedbymachinelearninganalysisofnasalrnasequencedata