Cargando…
Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration
BACKGROUND: Tetanus neurotoxin (TeNT) is taken up at nerve terminals and undergoes retrograde migration. The toxic properties of TeNT reside in the toxin light chain (L), but like complete TeNT, the TeNT heavy chain (TTH) and the C-terminal domain (TTC) alone can bind and enter into neurons. Here, w...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996528/ https://www.ncbi.nlm.nih.gov/pubmed/29890980 http://dx.doi.org/10.1186/s12896-018-0452-z |
_version_ | 1783330882038267904 |
---|---|
author | Watanabe, Yasuhiro Matsuba, Takashi Nakanishi, Mami Une, Mio Hanajima, Ritsuko Nakashima, Kenji |
author_facet | Watanabe, Yasuhiro Matsuba, Takashi Nakanishi, Mami Une, Mio Hanajima, Ritsuko Nakashima, Kenji |
author_sort | Watanabe, Yasuhiro |
collection | PubMed |
description | BACKGROUND: Tetanus neurotoxin (TeNT) is taken up at nerve terminals and undergoes retrograde migration. The toxic properties of TeNT reside in the toxin light chain (L), but like complete TeNT, the TeNT heavy chain (TTH) and the C-terminal domain (TTC) alone can bind and enter into neurons. Here, we explored whether atoxic fragments of TeNT could act as drug delivery vehicles in neurons. In this study, we used Bcl-2, a protein known to have anti-apoptotic properties in vivo and in vitro, as a parcel to couple to TeNT fragments. RESULTS: We expressed Bcl-2 and the TTC fragments alone, and also attempted to express fusion proteins with the Bcl-2 coupled at the N-terminus of TTH (Bcl2-TTH) and the N- and C-terminus of TTC (TTC-Bcl2 and Bcl2-TTC) in mammalian (Cos7 cells) and Escherichia coli systems. TTC and Bcl-2 were efficiently expressed in E. coli and Cos7 cells, respectively, but Bcl-2 and the fusion proteins did not express well in E. coli. The fusion proteins were also not expressed in Cos7 cells. To improve the yield and purity of the fusion protein, we genetically deleted the N-terminal half of TTC from the Bcl2-TTC fusion to yield Bcl2-hTTC. Purified Bcl2-hTTC exhibited neuronal binding and prevented cell death of neuronal PC12 cells induced by serum and NGF deprivation, as evidenced by the inhibition of cytochrome C release from the mitochondria. For in vivo assays, Bcl2-hTTC was injected into the tongues of mice and was seen to selectively migrate to hypoglossal nuclei mouse brain stems via retrograde axonal transport. CONCLUSIONS: These results indicate that Bcl2-hTTC retains both Bcl-2 and TTC functions and therefore could be a potent therapeutic agent for various neurological conditions. |
format | Online Article Text |
id | pubmed-5996528 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59965282018-06-25 Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration Watanabe, Yasuhiro Matsuba, Takashi Nakanishi, Mami Une, Mio Hanajima, Ritsuko Nakashima, Kenji BMC Biotechnol Research Article BACKGROUND: Tetanus neurotoxin (TeNT) is taken up at nerve terminals and undergoes retrograde migration. The toxic properties of TeNT reside in the toxin light chain (L), but like complete TeNT, the TeNT heavy chain (TTH) and the C-terminal domain (TTC) alone can bind and enter into neurons. Here, we explored whether atoxic fragments of TeNT could act as drug delivery vehicles in neurons. In this study, we used Bcl-2, a protein known to have anti-apoptotic properties in vivo and in vitro, as a parcel to couple to TeNT fragments. RESULTS: We expressed Bcl-2 and the TTC fragments alone, and also attempted to express fusion proteins with the Bcl-2 coupled at the N-terminus of TTH (Bcl2-TTH) and the N- and C-terminus of TTC (TTC-Bcl2 and Bcl2-TTC) in mammalian (Cos7 cells) and Escherichia coli systems. TTC and Bcl-2 were efficiently expressed in E. coli and Cos7 cells, respectively, but Bcl-2 and the fusion proteins did not express well in E. coli. The fusion proteins were also not expressed in Cos7 cells. To improve the yield and purity of the fusion protein, we genetically deleted the N-terminal half of TTC from the Bcl2-TTC fusion to yield Bcl2-hTTC. Purified Bcl2-hTTC exhibited neuronal binding and prevented cell death of neuronal PC12 cells induced by serum and NGF deprivation, as evidenced by the inhibition of cytochrome C release from the mitochondria. For in vivo assays, Bcl2-hTTC was injected into the tongues of mice and was seen to selectively migrate to hypoglossal nuclei mouse brain stems via retrograde axonal transport. CONCLUSIONS: These results indicate that Bcl2-hTTC retains both Bcl-2 and TTC functions and therefore could be a potent therapeutic agent for various neurological conditions. BioMed Central 2018-06-11 /pmc/articles/PMC5996528/ /pubmed/29890980 http://dx.doi.org/10.1186/s12896-018-0452-z Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Watanabe, Yasuhiro Matsuba, Takashi Nakanishi, Mami Une, Mio Hanajima, Ritsuko Nakashima, Kenji Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title | Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title_full | Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title_fullStr | Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title_full_unstemmed | Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title_short | Tetanus toxin fragments and Bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
title_sort | tetanus toxin fragments and bcl-2 fusion proteins: cytoprotection and retrograde axonal migration |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996528/ https://www.ncbi.nlm.nih.gov/pubmed/29890980 http://dx.doi.org/10.1186/s12896-018-0452-z |
work_keys_str_mv | AT watanabeyasuhiro tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration AT matsubatakashi tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration AT nakanishimami tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration AT unemio tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration AT hanajimaritsuko tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration AT nakashimakenji tetanustoxinfragmentsandbcl2fusionproteinscytoprotectionandretrogradeaxonalmigration |