Cargando…
GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes
This study aimed to investigate whether exosomes secreted by mouse GATA-4-expressing bone marrow mesenchymal stem cells (BMSCs) could induce BMSC differentiation into myocyte precursors, decrease cardiomyocyte apoptosis, and improve cardiac function following myocardial infarction (MI). BMSCs were t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998064/ https://www.ncbi.nlm.nih.gov/pubmed/29899566 http://dx.doi.org/10.1038/s41598-018-27435-9 |
Sumario: | This study aimed to investigate whether exosomes secreted by mouse GATA-4-expressing bone marrow mesenchymal stem cells (BMSCs) could induce BMSC differentiation into myocyte precursors, decrease cardiomyocyte apoptosis, and improve cardiac function following myocardial infarction (MI). BMSCs were transduced with a lentivirus carrying a doxycycline (DOX)-inducible GATA-4 or control lentivirus, and secreted exosomes from these BMSCs were collected and co-cultured with BMSCs or cardiomyocytes under hypoxic and serum free conditions. Furthermore, exosomes were injected into mice 48 h after MI. Cardiac function was evaluated by echocardiography at 48, 72, and 96 h after exosome treatment. Quantitative PCR showed that co-culture of BMSCs with GATA-4-BMSC exosomes increased cardiomyocyte-related marker expression. Co-culture of GATA-4-BMSC exosomes with cardiomyocytes in anoxic conditions decreased apoptosis as detected by flow cytometry. Injection of GATA-4-BMSC exosomes in mice 48 h after MI increased cardiac function over the next 96 h; increased cardiac blood vessel density and number of c-kit-positive cells and decreased apoptotic cardiomyocyte cells were also observed. Differential expression of candidate differentiation- and apoptosis-related miRNAs and proteins that may mediate these effects was also identified. Exosomes isolated from GATA-4-expressing BMSCs induce differentiation of BMSCs into cardiomyocyte-like cells, decrease anoxia-induced cardiomyocyte apoptosis, and improve myocardial function after infarction. |
---|