Cargando…
Identification of drug-target interaction by a random walk with restart method on an interactome network
BACKGROUND: Identification of drug-target interactions acts as a key role in drug discovery. However, identifying drug-target interactions via in-vitro, in-vivo experiments are very laborious, time-consuming. Thus, predicting drug-target interactions by using computational approaches is a good alter...
Autores principales: | Lee, Ingoo, Nam, Hojung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998759/ https://www.ncbi.nlm.nih.gov/pubmed/29897326 http://dx.doi.org/10.1186/s12859-018-2199-x |
Ejemplares similares
-
Sequence-based prediction of protein binding regions and drug–target interactions
por: Lee, Ingoo, et al.
Publicado: (2022) -
DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences
por: Lee, Ingoo, et al.
Publicado: (2019) -
Identification of Drug-Disease Associations Using a Random Walk with Restart Method and Supervised Learning
por: Liu, Xiaoqing, et al.
Publicado: (2022) -
Supervised and extended restart in random walks for ranking and link prediction in networks
por: Jin, Woojeong, et al.
Publicado: (2019) -
Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches
por: Kim, Hyunho, et al.
Publicado: (2021)