Cargando…
Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals
Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003643/ https://www.ncbi.nlm.nih.gov/pubmed/29906337 http://dx.doi.org/10.14814/phy2.13739 |
_version_ | 1783332388230660096 |
---|---|
author | Savikj, Mladen Ruby, Maxwell A. Kostovski, Emil Iversen, Per O. Zierath, Juleen R. Krook, Anna Widegren, Ulrika |
author_facet | Savikj, Mladen Ruby, Maxwell A. Kostovski, Emil Iversen, Per O. Zierath, Juleen R. Krook, Anna Widegren, Ulrika |
author_sort | Savikj, Mladen |
collection | PubMed |
description | Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord‐injured and six able‐bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer‐based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able‐bodied and spinal cord‐injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord‐injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord‐injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt‐mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord‐injured individuals was unchanged (P > 0.05) compared to able‐bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy. |
format | Online Article Text |
id | pubmed-6003643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-60036432018-06-21 Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals Savikj, Mladen Ruby, Maxwell A. Kostovski, Emil Iversen, Per O. Zierath, Juleen R. Krook, Anna Widegren, Ulrika Physiol Rep Original Research Despite the well‐known role of satellite cells in skeletal muscle plasticity, the effect of spinal cord injury on their function in humans remains unknown. We determined whether spinal cord injury affects the intrinsic ability of satellite cells to differentiate and produce metabolically healthy myotubes. We obtained vastus lateralis biopsies from eight spinal cord‐injured and six able‐bodied individuals. Satellite cells were isolated, grown and differentiated in vitro. Gene expression was measured by quantitative PCR. Abundance of differentiation markers and regulatory proteins was determined by Western blotting. Protein synthesis and fatty acid oxidation were measured by radioactive tracer‐based assays. Activated satellite cells (myoblasts) and differentiated myotubes derived from skeletal muscle of able‐bodied and spinal cord‐injured individuals expressed similar (P > 0.05) mRNA levels of myogenic regulatory factors. Myogenic differentiation factor 1 expression was higher in myoblasts from spinal cord‐injured individuals. Desmin and myogenin protein content was increased upon differentiation in both groups, while myotubes from spinal cord‐injured individuals contained more type I and II myosin heavy chain. Phosphorylated and total protein levels of Akt‐mechanistic target of rapamycin and forkhead box protein O signalling axes and protein synthesis rate in myotubes were similar (P > 0.05) between groups. Additionally, fatty acid oxidation of myotubes from spinal cord‐injured individuals was unchanged (P > 0.05) compared to able‐bodied controls. Our results indicate that the intrinsic differentiation capacity of satellite cells and metabolic characteristics of myotubes are preserved following spinal cord injury. This may inform potential interventions targeting satellite cell activation to alleviate skeletal muscle atrophy. John Wiley and Sons Inc. 2018-06-14 /pmc/articles/PMC6003643/ /pubmed/29906337 http://dx.doi.org/10.14814/phy2.13739 Text en © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Savikj, Mladen Ruby, Maxwell A. Kostovski, Emil Iversen, Per O. Zierath, Juleen R. Krook, Anna Widegren, Ulrika Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title | Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title_full | Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title_fullStr | Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title_full_unstemmed | Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title_short | Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
title_sort | retained differentiation capacity of human skeletal muscle satellite cells from spinal cord‐injured individuals |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003643/ https://www.ncbi.nlm.nih.gov/pubmed/29906337 http://dx.doi.org/10.14814/phy2.13739 |
work_keys_str_mv | AT savikjmladen retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT rubymaxwella retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT kostovskiemil retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT iversenpero retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT zierathjuleenr retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT krookanna retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals AT widegrenulrika retaineddifferentiationcapacityofhumanskeletalmusclesatellitecellsfromspinalcordinjuredindividuals |