Cargando…

Changes in body composition, bone metabolism, strength, and skill-specific performance resulting from 16-weeks of HIFT

High Intensity Functional Training (HIFT) is a training modality, characterized by multimodal exercises performed at high-intensity. Little is known about the training adaptations that occur as a prolonged training program. The purpose of this study was to examine changes in body composition, bone m...

Descripción completa

Detalles Bibliográficos
Autores principales: Feito, Yuri, Hoffstetter, Wade, Serafini, Paul, Mangine, Gerald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003684/
https://www.ncbi.nlm.nih.gov/pubmed/29906290
http://dx.doi.org/10.1371/journal.pone.0198324
Descripción
Sumario:High Intensity Functional Training (HIFT) is a training modality, characterized by multimodal exercises performed at high-intensity. Little is known about the training adaptations that occur as a prolonged training program. The purpose of this study was to examine changes in body composition, bone metabolism, strength, and skill-specific performance over 16-weeks of HIFT. Twenty-six recreationally active adult males (n = 9; 34.2 ± 9.1 y; 91.5 ± 17.7 kg; 178.5 ± 5.4 cm) and females (n = 17 = 36.4 ± 7.9 y; 91.5 ± 17.7 kg; 162.9 ± 7.0 cm) completed pre and post training assessments of body composition (Dual-Energy X-Ray Absorptiometry) and performance measures. Performance was assessed using three HIFT workouts (WOD 1–3) to assess strength, skill, and metabolic performance. Aside from the body composition measurements, all assessments were carried out at the local training facility. Training included participation in HIFT a minimum of twice a week for 16-weeks. Repeated measures analysis of variance revealed a significant gender x time interaction in Bone Mineral Content (BMC) (p = 0.027), where improvements favored women (1.0% ± 1.1%, p = 0.004) over men (-0.1% + 0.8%, p = 0.625). Further, region-specific analysis indicated that women (2.5% ± 3.0%, p < 0.005) experienced greater improvements in the trunk compared to men (-0.3% ± 1.8%, p = 0.621), while changes in leg BMC were comparable between women (0.8% ± 1.0%, p < 0.001) and men (0.3% ± 0.6%, p < 0.001). Although no other interactions were observed, significant performance improvements were noted for all participants in WOD 1 (18.3% ± 16.8%), absolute 5RM (14.4% ± 9.7%), relative 5RM (15.4% ± 9.2%), WOD 2 (5.7% ± 6.5%), and WOD 3 (–17.3% ± 14.7%). These data indicate that 16-weeks of HIFT resulted in positive outcomes in strength, metabolic conditioning performance, and body composition.