Cargando…

Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification

N(6)-threonyl-carbamoyl adenosine (t(6)A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t(6)A stabilizes the codon–anticodon interaction and hence promotes translation fidelity. The first step of the b...

Descripción completa

Detalles Bibliográficos
Autores principales: Pichard-Kostuch, Adeline, Zhang, Wenhua, Liger, Dominique, Daugeron, Marie-Claire, Létoquart, Juliette, Li de la Sierra-Gallay, Ines, Forterre, Patrick, Collinet, Bruno, van Tilbeurgh, Herman, Basta, Tamara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004061/
https://www.ncbi.nlm.nih.gov/pubmed/29650678
http://dx.doi.org/10.1261/rna.066092.118
_version_ 1783332457156706304
author Pichard-Kostuch, Adeline
Zhang, Wenhua
Liger, Dominique
Daugeron, Marie-Claire
Létoquart, Juliette
Li de la Sierra-Gallay, Ines
Forterre, Patrick
Collinet, Bruno
van Tilbeurgh, Herman
Basta, Tamara
author_facet Pichard-Kostuch, Adeline
Zhang, Wenhua
Liger, Dominique
Daugeron, Marie-Claire
Létoquart, Juliette
Li de la Sierra-Gallay, Ines
Forterre, Patrick
Collinet, Bruno
van Tilbeurgh, Herman
Basta, Tamara
author_sort Pichard-Kostuch, Adeline
collection PubMed
description N(6)-threonyl-carbamoyl adenosine (t(6)A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t(6)A stabilizes the codon–anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t(6)A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure–function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain–domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.
format Online
Article
Text
id pubmed-6004061
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-60040612019-07-01 Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification Pichard-Kostuch, Adeline Zhang, Wenhua Liger, Dominique Daugeron, Marie-Claire Létoquart, Juliette Li de la Sierra-Gallay, Ines Forterre, Patrick Collinet, Bruno van Tilbeurgh, Herman Basta, Tamara RNA Article N(6)-threonyl-carbamoyl adenosine (t(6)A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t(6)A stabilizes the codon–anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t(6)A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure–function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain–domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis. Cold Spring Harbor Laboratory Press 2018-07 /pmc/articles/PMC6004061/ /pubmed/29650678 http://dx.doi.org/10.1261/rna.066092.118 Text en © 2018 Pichard-Kostuch et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
spellingShingle Article
Pichard-Kostuch, Adeline
Zhang, Wenhua
Liger, Dominique
Daugeron, Marie-Claire
Létoquart, Juliette
Li de la Sierra-Gallay, Ines
Forterre, Patrick
Collinet, Bruno
van Tilbeurgh, Herman
Basta, Tamara
Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title_full Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title_fullStr Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title_full_unstemmed Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title_short Structure–function analysis of Sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)A tRNA modification
title_sort structure–function analysis of sua5 protein reveals novel functional motifs required for the biosynthesis of the universal t(6)a trna modification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004061/
https://www.ncbi.nlm.nih.gov/pubmed/29650678
http://dx.doi.org/10.1261/rna.066092.118
work_keys_str_mv AT pichardkostuchadeline structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT zhangwenhua structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT ligerdominique structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT daugeronmarieclaire structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT letoquartjuliette structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT lidelasierragallayines structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT forterrepatrick structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT collinetbruno structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT vantilbeurghherman structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification
AT bastatamara structurefunctionanalysisofsua5proteinrevealsnovelfunctionalmotifsrequiredforthebiosynthesisoftheuniversalt6atrnamodification