Cargando…

Quantification and pharmacokinetic study of tumor-targeting agent MHI148-clorgyline amide in mouse plasma using liquid chromatography-electrospray ionization tandem mass spectrometry

A high-performance liquid chromatography-electrospray ionization tandem mass spectrometric (HPLC-ESI-MS/MS) method was developed for the quantification of MHI148-clorgyline amide (NMI-amide), a novel tumor-targeting monoamine oxidase A inhibitor, in mouse plasma. The method was validated in terms of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhijun, Olenyuk, Bogdan Z., Shih, Jean Chen, Wang, Jeffrey
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Xi'an Jiaotong University 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004616/
https://www.ncbi.nlm.nih.gov/pubmed/29922483
http://dx.doi.org/10.1016/j.jpha.2017.10.001
Descripción
Sumario:A high-performance liquid chromatography-electrospray ionization tandem mass spectrometric (HPLC-ESI-MS/MS) method was developed for the quantification of MHI148-clorgyline amide (NMI-amide), a novel tumor-targeting monoamine oxidase A inhibitor, in mouse plasma. The method was validated in terms of sensitivity, precision, accuracy, recovery and stability and then applied to a pharmacokinetic study of NMI-amide in mice following intravenous administration. NMI-amide together with the internal standard (IS), MHI-148, was extracted by protein precipitation using acetonitrile. Multiple reaction monitoring was used for quantification of NMI-amide by detecting m/z transition of 491.2–361.9, and 685.3–258.2 for NMI-amide and the IS, respectively. The lower limit of quantification (LLOQ) of the HPLC–MS/MS method for NMI-amide was 0.005 μg/mL and the linear calibration curve was acquired with R(2) > 0.99 in the concentration range of 0.005–2 μg/mL. The intra- and inter-day precisions of the assay were assessed by percentage of the coefficient of variations, which was within 9.8% at LLOQ and 14.0% for other quality control samples, whereas the mean accuracy ranged from 86.8% to 113.2%. The samples were stable under storage and experimental conditions. This method was successfully applied to a pharmacokinetic study in mice following intravenous administration of 5 mg/kg NMI-amide.