Cargando…

A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection

Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Singhania, Akul, Verma, Raman, Graham, Christine M., Lee, Jo, Tran, Trang, Richardson, Matthew, Lecine, Patrick, Leissner, Philippe, Berry, Matthew P. R., Wilkinson, Robert J., Kaiser, Karine, Rodrigue, Marc, Woltmann, Gerrit, Haldar, Pranabashis, O’Garra, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008327/
https://www.ncbi.nlm.nih.gov/pubmed/29921861
http://dx.doi.org/10.1038/s41467-018-04579-w
_version_ 1783333148656926720
author Singhania, Akul
Verma, Raman
Graham, Christine M.
Lee, Jo
Tran, Trang
Richardson, Matthew
Lecine, Patrick
Leissner, Philippe
Berry, Matthew P. R.
Wilkinson, Robert J.
Kaiser, Karine
Rodrigue, Marc
Woltmann, Gerrit
Haldar, Pranabashis
O’Garra, Anne
author_facet Singhania, Akul
Verma, Raman
Graham, Christine M.
Lee, Jo
Tran, Trang
Richardson, Matthew
Lecine, Patrick
Leissner, Philippe
Berry, Matthew P. R.
Wilkinson, Robert J.
Kaiser, Karine
Rodrigue, Marc
Woltmann, Gerrit
Haldar, Pranabashis
O’Garra, Anne
author_sort Singhania, Akul
collection PubMed
description Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts.
format Online
Article
Text
id pubmed-6008327
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-60083272018-06-21 A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection Singhania, Akul Verma, Raman Graham, Christine M. Lee, Jo Tran, Trang Richardson, Matthew Lecine, Patrick Leissner, Philippe Berry, Matthew P. R. Wilkinson, Robert J. Kaiser, Karine Rodrigue, Marc Woltmann, Gerrit Haldar, Pranabashis O’Garra, Anne Nat Commun Article Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts. Nature Publishing Group UK 2018-06-19 /pmc/articles/PMC6008327/ /pubmed/29921861 http://dx.doi.org/10.1038/s41467-018-04579-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Singhania, Akul
Verma, Raman
Graham, Christine M.
Lee, Jo
Tran, Trang
Richardson, Matthew
Lecine, Patrick
Leissner, Philippe
Berry, Matthew P. R.
Wilkinson, Robert J.
Kaiser, Karine
Rodrigue, Marc
Woltmann, Gerrit
Haldar, Pranabashis
O’Garra, Anne
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title_full A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title_fullStr A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title_full_unstemmed A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title_short A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
title_sort modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008327/
https://www.ncbi.nlm.nih.gov/pubmed/29921861
http://dx.doi.org/10.1038/s41467-018-04579-w
work_keys_str_mv AT singhaniaakul amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT vermaraman amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT grahamchristinem amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT leejo amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT trantrang amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT richardsonmatthew amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT lecinepatrick amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT leissnerphilippe amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT berrymatthewpr amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT wilkinsonrobertj amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT kaiserkarine amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT rodriguemarc amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT woltmanngerrit amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT haldarpranabashis amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT ogarraanne amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT singhaniaakul modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT vermaraman modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT grahamchristinem modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT leejo modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT trantrang modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT richardsonmatthew modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT lecinepatrick modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT leissnerphilippe modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT berrymatthewpr modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT wilkinsonrobertj modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT kaiserkarine modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT rodriguemarc modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT woltmanngerrit modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT haldarpranabashis modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection
AT ogarraanne modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection