Cargando…
A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection
Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we sho...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008327/ https://www.ncbi.nlm.nih.gov/pubmed/29921861 http://dx.doi.org/10.1038/s41467-018-04579-w |
_version_ | 1783333148656926720 |
---|---|
author | Singhania, Akul Verma, Raman Graham, Christine M. Lee, Jo Tran, Trang Richardson, Matthew Lecine, Patrick Leissner, Philippe Berry, Matthew P. R. Wilkinson, Robert J. Kaiser, Karine Rodrigue, Marc Woltmann, Gerrit Haldar, Pranabashis O’Garra, Anne |
author_facet | Singhania, Akul Verma, Raman Graham, Christine M. Lee, Jo Tran, Trang Richardson, Matthew Lecine, Patrick Leissner, Philippe Berry, Matthew P. R. Wilkinson, Robert J. Kaiser, Karine Rodrigue, Marc Woltmann, Gerrit Haldar, Pranabashis O’Garra, Anne |
author_sort | Singhania, Akul |
collection | PubMed |
description | Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts. |
format | Online Article Text |
id | pubmed-6008327 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-60083272018-06-21 A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection Singhania, Akul Verma, Raman Graham, Christine M. Lee, Jo Tran, Trang Richardson, Matthew Lecine, Patrick Leissner, Philippe Berry, Matthew P. R. Wilkinson, Robert J. Kaiser, Karine Rodrigue, Marc Woltmann, Gerrit Haldar, Pranabashis O’Garra, Anne Nat Commun Article Whole blood transcriptional signatures distinguishing active tuberculosis patients from asymptomatic latently infected individuals exist. Consensus has not been achieved regarding the optimal reduced gene sets as diagnostic biomarkers that also achieve discrimination from other diseases. Here we show a blood transcriptional signature of active tuberculosis using RNA-Seq, confirming microarray results, that discriminates active tuberculosis from latently infected and healthy individuals, validating this signature in an independent cohort. Using an advanced modular approach, we utilise the information from the entire transcriptome, which includes overabundance of type I interferon-inducible genes and underabundance of IFNG and TBX21, to develop a signature that discriminates active tuberculosis patients from latently infected individuals or those with acute viral and bacterial infections. We suggest that methods targeting gene selection across multiple discriminant modules can improve the development of diagnostic biomarkers with improved performance. Finally, utilising the modular approach, we demonstrate dynamic heterogeneity in a longitudinal study of recent tuberculosis contacts. Nature Publishing Group UK 2018-06-19 /pmc/articles/PMC6008327/ /pubmed/29921861 http://dx.doi.org/10.1038/s41467-018-04579-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Singhania, Akul Verma, Raman Graham, Christine M. Lee, Jo Tran, Trang Richardson, Matthew Lecine, Patrick Leissner, Philippe Berry, Matthew P. R. Wilkinson, Robert J. Kaiser, Karine Rodrigue, Marc Woltmann, Gerrit Haldar, Pranabashis O’Garra, Anne A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title | A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title_full | A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title_fullStr | A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title_full_unstemmed | A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title_short | A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
title_sort | modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6008327/ https://www.ncbi.nlm.nih.gov/pubmed/29921861 http://dx.doi.org/10.1038/s41467-018-04579-w |
work_keys_str_mv | AT singhaniaakul amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT vermaraman amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT grahamchristinem amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT leejo amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT trantrang amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT richardsonmatthew amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT lecinepatrick amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT leissnerphilippe amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT berrymatthewpr amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT wilkinsonrobertj amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT kaiserkarine amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT rodriguemarc amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT woltmanngerrit amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT haldarpranabashis amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT ogarraanne amodulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT singhaniaakul modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT vermaraman modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT grahamchristinem modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT leejo modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT trantrang modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT richardsonmatthew modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT lecinepatrick modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT leissnerphilippe modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT berrymatthewpr modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT wilkinsonrobertj modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT kaiserkarine modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT rodriguemarc modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT woltmanngerrit modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT haldarpranabashis modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection AT ogarraanne modulartranscriptionalsignatureidentifiesphenotypicheterogeneityofhumantuberculosisinfection |