Cargando…
Single and double activation of acetone by isolobal B[triple bond, length as m-dash]N and B[triple bond, length as m-dash]B triple bonds
B[triple bond, length as m-dash]N and B[triple bond, length as m-dash]B triple bonds induce C–H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2-propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6009441/ https://www.ncbi.nlm.nih.gov/pubmed/30009006 http://dx.doi.org/10.1039/c8sc01249k |
Sumario: | B[triple bond, length as m-dash]N and B[triple bond, length as m-dash]B triple bonds induce C–H activation of acetone to yield a (2-propenyloxy)aminoborane and an unsymmetrical 1-(2-propenyloxy)-2-hydrodiborene, respectively. DFT calculations showed that, despite their stark electronic differences, both the B[triple bond, length as m-dash]N and B[triple bond, length as m-dash]B triple bonds activate acetone via a similar coordination-deprotonation mechanism. In contrast, the reaction of acetone with a cAAC-supported diboracumulene yielded a unique 1,2,3-oxadiborole, which according to DFT calculations also proceeds via an unsymmetrical diborene, followed by intramolecular hydride migration and a second C–H activation of the enolate ligand. |
---|