Cargando…
Low-Dose 4-Hydroxy-2-Nonenal (HNE) Reperfusion Therapy Displays Cardioprotective Effects in Mice After Myocardial Infarction That Are Abrogated by Genipin
BACKGROUND: Revascularization is a successful therapeutic strategy for myocardial infarction. However, restoring coronary blood flow can lead to ischemia-reperfusion (I/R) injury. Low-dose 4-hydroxy-2-nonenal (HNE) therapy appears to play a key role in myocardial tolerance to I/R injury. We hypothes...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Scientific Literature, Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6014150/ https://www.ncbi.nlm.nih.gov/pubmed/29858912 http://dx.doi.org/10.12659/MSM.910494 |
Sumario: | BACKGROUND: Revascularization is a successful therapeutic strategy for myocardial infarction. However, restoring coronary blood flow can lead to ischemia-reperfusion (I/R) injury. Low-dose 4-hydroxy-2-nonenal (HNE) therapy appears to play a key role in myocardial tolerance to I/R injury. We hypothesized that the positive effects of HNE on myocardial I/R injury may be UCP3-dependent. MATERIAL/METHODS: Adult male wild-type (WT) or UCP3 knockout (UCP3−/−) mice were pre-treated with the UCP inhibitor genipin or saline 1 h before ischemia and underwent 30-min coronary artery ligation followed by 24-h reperfusion. Mice were treated with intravenous HNE (4 mg/kg) or saline 5 min before reperfusion. Echocardiography was conducted to measure left ventricular end-diastolic posterior wall thickness (LVPWd), end-diastolic diameter (LVEDD), and fractional shortening (FS). Infarct size was measured by TTC staining. qRT-PCR and Western blotting were used to assess the expression of UCP3, UCP2, and the apoptosis markers cytochrome C and cleaved caspase-3. RESULTS: HNE improved survival at 24 h post-MI in wild-type mice (p<0.05) but not in UCP3−/− mice. HNE preserved LVEDD and FS in WT mice (p<0.05) but not in UCP3−/− mice. HNE reduced infarct size in WT mice (p<0.05) but not in UCP3−/− mice. HNE upregulated UCP3 expression (p<0.05) but did not affect UCP2 expression. HNE reduced apoptosis marker expression in WT mice (p<0.05) but not in UCP3−/− mice. HNE’s positive effects were abrogated by genipin in an UCP3-dependent manner. CONCLUSIONS: Low-dose HNE reperfusion therapy attenuates murine myocardial I/R injury in an UCP3-dependent manner. These effects are abrogated by genipin in an UCP3-dependent manner. |
---|