Cargando…

Research on the sliding friction associated spur-face gear meshing efficiency based on the loaded tooth contact analysis

In order to solve the problem of Meshing Efficiency of spur-face gear sliding friction, a method for calculating the Meshing Efficiency of Spur-Face gear is proposed based on Elastohydrodynamic lubrication (EHL) theory. Through the Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis techn...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Hao, Liu, Zhi-Yu, Duan, Ling-ling, Hu, Ya-hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019762/
https://www.ncbi.nlm.nih.gov/pubmed/29944661
http://dx.doi.org/10.1371/journal.pone.0198677
Descripción
Sumario:In order to solve the problem of Meshing Efficiency of spur-face gear sliding friction, a method for calculating the Meshing Efficiency of Spur-Face gear is proposed based on Elastohydrodynamic lubrication (EHL) theory. Through the Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis technique (LTCA) method, the meshing process of the Spur-Face gear was simulated. The calculation model of Sliding friction coefficient was established by using non Newtonian quasi steady thermal Elastohydrodynamic lubrication (TEHL) theory, and the calculation model of Meshing Efficiency of Spur-Face gear was established. The influence of input torque and rotational speed on Meshing Efficiency is analyzed. The results show that Sliding friction coefficient is an important factor affecting the Meshing Efficiency of gears. Sliding friction coefficient is not the same at different positions of the tooth surface. Sliding friction coefficient is affected by input speed and input torque. This method provides a theoretical basis for further optimization calculation of Spur-Face gear.