Cargando…

Suppression of chloride voltage-gated channel 3 expression increases sensitivity of human glioma U251 cells to cisplatin through lysosomal dysfunction

The mechanism of cisplatin resistance is complex. Previous studies have indicated that chloride voltage-gated channel 3 (CLCN3) is associated with drug resistance; however, the mechanisms are not fully understood. Therefore, the present study explored the involvement of CLCN3 in cisplatin resistance...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yihe, Zhou, Lei, Zhang, Juanjuan, Zhang, Lichao, Yan, Xiaoyu, Su, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019884/
https://www.ncbi.nlm.nih.gov/pubmed/29963152
http://dx.doi.org/10.3892/ol.2018.8736
Descripción
Sumario:The mechanism of cisplatin resistance is complex. Previous studies have indicated that chloride voltage-gated channel 3 (CLCN3) is associated with drug resistance; however, the mechanisms are not fully understood. Therefore, the present study explored the involvement of CLCN3 in cisplatin resistance in human glioma U251 cells. The effects of combined cisplatin treatment and CLCN3 suppression on cultured U251 cells were investigated. The decreased viability of cisplatin-treated U251 cells indicated the cytotoxic effects of CLCN3 silencing. Expression of the apoptosis-related gene TP53 and caspase 3 activation were enhanced in cisplatin-treated U251 cells. Furthermore, the ratio of BCL2/BAX expression was decreased. Notably, CLCN3 suppression promoted cisplatin-induced cell damage in U251 cells. Thus, the combined use of cisplatin and CLCN3 antisense had additive effects in U251 cells. In addition, the present results indicated that CLCN3 suppression decreased lysosome stabilization in U251 cells treated with cisplatin. To conclude, the present results indicated that CLCN3 suppression can sensitize glioma cells to cisplatin through lysosomal dysfunction.