Cargando…
Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells
BACKGROUND: Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS: To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020472/ https://www.ncbi.nlm.nih.gov/pubmed/29950180 http://dx.doi.org/10.1186/s13073-018-0557-y |
_version_ | 1783335302608191488 |
---|---|
author | Anufrieva, Ksenia S. Shender, Victoria О. Arapidi, Georgij P. Pavlyukov, Marat S. Shakhparonov, Michail I. Shnaider, Polina V. Butenko, Ivan O. Lagarkova, Maria A. Govorun, Vadim M. |
author_facet | Anufrieva, Ksenia S. Shender, Victoria О. Arapidi, Georgij P. Pavlyukov, Marat S. Shakhparonov, Michail I. Shnaider, Polina V. Butenko, Ivan O. Lagarkova, Maria A. Govorun, Vadim M. |
author_sort | Anufrieva, Ksenia S. |
collection | PubMed |
description | BACKGROUND: Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS: To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS: Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS: Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-018-0557-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6020472 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-60204722018-07-06 Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells Anufrieva, Ksenia S. Shender, Victoria О. Arapidi, Georgij P. Pavlyukov, Marat S. Shakhparonov, Michail I. Shnaider, Polina V. Butenko, Ivan O. Lagarkova, Maria A. Govorun, Vadim M. Genome Med Research BACKGROUND: Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS: To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS: Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS: Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13073-018-0557-y) contains supplementary material, which is available to authorized users. BioMed Central 2018-06-27 /pmc/articles/PMC6020472/ /pubmed/29950180 http://dx.doi.org/10.1186/s13073-018-0557-y Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Anufrieva, Ksenia S. Shender, Victoria О. Arapidi, Georgij P. Pavlyukov, Marat S. Shakhparonov, Michail I. Shnaider, Polina V. Butenko, Ivan O. Lagarkova, Maria A. Govorun, Vadim M. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title | Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title_full | Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title_fullStr | Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title_full_unstemmed | Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title_short | Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells |
title_sort | therapy-induced stress response is associated with downregulation of pre-mrna splicing in cancer cells |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020472/ https://www.ncbi.nlm.nih.gov/pubmed/29950180 http://dx.doi.org/10.1186/s13073-018-0557-y |
work_keys_str_mv | AT anufrievaksenias therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT shendervictoriao therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT arapidigeorgijp therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT pavlyukovmarats therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT shakhparonovmichaili therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT shnaiderpolinav therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT butenkoivano therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT lagarkovamariaa therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells AT govorunvadimm therapyinducedstressresponseisassociatedwithdownregulationofpremrnasplicingincancercells |