Cargando…
Efficacy and safety of the artificial pancreas in the paediatric population with type 1 diabetes
BACKGROUND: Type 1 diabetes (DM1) is one of the most common chronic diseases in childhood and requires life-long insulin therapy and continuous health care support. An artificial pancreas (AP) or closed-loop system (CLS) have been developed with the aim of improving metabolic control without increas...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022450/ https://www.ncbi.nlm.nih.gov/pubmed/29954380 http://dx.doi.org/10.1186/s12967-018-1558-8 |
Sumario: | BACKGROUND: Type 1 diabetes (DM1) is one of the most common chronic diseases in childhood and requires life-long insulin therapy and continuous health care support. An artificial pancreas (AP) or closed-loop system (CLS) have been developed with the aim of improving metabolic control without increasing the risk of hypoglycaemia in patients with DM1. As the impact of APs have been studied mainly in adults, the aim of this review is to evaluate the efficacy and safety of the AP in the paediatric population with DM1. MAIN BODY: The real advantage of a CLS compared to last-generation sensor-augmented pumps is the gradual modulation of basal insulin infusion in response to glycaemic variations (towards both hyperglycaemia and hypoglycaemia), which has the aim of improving the proportion of time spent in the target glucose range and reducing the mean glucose level without increasing the risk of hypoglycaemia. Some recent studies demonstrated that also in children and adolescents an AP is able to reduce the frequency of hypoglycaemic events, an important limiting factor in reaching good metabolic control, particularly overnight. However, the advantages of the AP in reducing hyperglycaemia, increasing the time spent in the target glycaemic range and thus reducing glycated haemoglobin are less clear and require more clinical trials in the paediatric population, in particular in younger children. CONCLUSIONS: Although the first results from bi-hormonal CLS are promising, long-term, head-to-head studies will have to prove their superiority over insulin-only approaches. More technological progress, the availability of more fast-acting insulin, further developments of algorithms that could improve glycaemic control after meals and physical activity are the most important challenges in reaching an optimal metabolic control with the use of the AP in children and adolescents. |
---|