Cargando…
Personalized regression enables sample-specific pan-cancer analysis
MOTIVATION: In many applications, inter-sample heterogeneity is crucial to understanding the complex biological processes under study. For example, in genomic analysis of cancers, each patient in a cohort may have a different driver mutation, making it difficult or impossible to identify causal muta...
Autores principales: | Lengerich, Benjamin J, Aragam, Bryon, Xing, Eric P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022603/ https://www.ncbi.nlm.nih.gov/pubmed/29949997 http://dx.doi.org/10.1093/bioinformatics/bty250 |
Ejemplares similares
-
A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains
por: Her, Hsuan-Lin, et al.
Publicado: (2018) -
A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity
por: Petralia, Francesca, et al.
Publicado: (2018) -
Strand-seq enables reliable separation of long reads by chromosome via expectation maximization
por: Ghareghani, Maryam, et al.
Publicado: (2018) -
Deconvolution and phylogeny inference of structural variations in tumor genomic samples
por: Eaton, Jesse, et al.
Publicado: (2018) -
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
por: Asgari, Ehsaneddin, et al.
Publicado: (2018)