Cargando…
ShinyKGode: an interactive application for ODE parameter inference using gradient matching
MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approxim...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022662/ https://www.ncbi.nlm.nih.gov/pubmed/29490021 http://dx.doi.org/10.1093/bioinformatics/bty089 |
_version_ | 1783335726169980928 |
---|---|
author | Wandy, Joe Niu, Mu Giurghita, Diana Daly, Rónán Rogers, Simon Husmeier, Dirk |
author_facet | Wandy, Joe Niu, Mu Giurghita, Diana Daly, Rónán Rogers, Simon Husmeier, Dirk |
author_sort | Wandy, Joe |
collection | PubMed |
description | MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here, we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. RESULTS: ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualized alongside diagnostic plots to assess convergence. AVAILABILITY AND IMPLEMENTATION: The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-6022662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-60226622018-07-10 ShinyKGode: an interactive application for ODE parameter inference using gradient matching Wandy, Joe Niu, Mu Giurghita, Diana Daly, Rónán Rogers, Simon Husmeier, Dirk Bioinformatics Applications Notes MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here, we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. RESULTS: ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualized alongside diagnostic plots to assess convergence. AVAILABILITY AND IMPLEMENTATION: The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-07-01 2018-02-27 /pmc/articles/PMC6022662/ /pubmed/29490021 http://dx.doi.org/10.1093/bioinformatics/bty089 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Applications Notes Wandy, Joe Niu, Mu Giurghita, Diana Daly, Rónán Rogers, Simon Husmeier, Dirk ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title | ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title_full | ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title_fullStr | ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title_full_unstemmed | ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title_short | ShinyKGode: an interactive application for ODE parameter inference using gradient matching |
title_sort | shinykgode: an interactive application for ode parameter inference using gradient matching |
topic | Applications Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022662/ https://www.ncbi.nlm.nih.gov/pubmed/29490021 http://dx.doi.org/10.1093/bioinformatics/bty089 |
work_keys_str_mv | AT wandyjoe shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching AT niumu shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching AT giurghitadiana shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching AT dalyronan shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching AT rogerssimon shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching AT husmeierdirk shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching |