Cargando…

ShinyKGode: an interactive application for ODE parameter inference using gradient matching

MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approxim...

Descripción completa

Detalles Bibliográficos
Autores principales: Wandy, Joe, Niu, Mu, Giurghita, Diana, Daly, Rónán, Rogers, Simon, Husmeier, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022662/
https://www.ncbi.nlm.nih.gov/pubmed/29490021
http://dx.doi.org/10.1093/bioinformatics/bty089
_version_ 1783335726169980928
author Wandy, Joe
Niu, Mu
Giurghita, Diana
Daly, Rónán
Rogers, Simon
Husmeier, Dirk
author_facet Wandy, Joe
Niu, Mu
Giurghita, Diana
Daly, Rónán
Rogers, Simon
Husmeier, Dirk
author_sort Wandy, Joe
collection PubMed
description MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here, we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. RESULTS: ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualized alongside diagnostic plots to assess convergence. AVAILABILITY AND IMPLEMENTATION: The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-6022662
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-60226622018-07-10 ShinyKGode: an interactive application for ODE parameter inference using gradient matching Wandy, Joe Niu, Mu Giurghita, Diana Daly, Rónán Rogers, Simon Husmeier, Dirk Bioinformatics Applications Notes MOTIVATION: Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here, we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. RESULTS: ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualized alongside diagnostic plots to assess convergence. AVAILABILITY AND IMPLEMENTATION: The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2018-07-01 2018-02-27 /pmc/articles/PMC6022662/ /pubmed/29490021 http://dx.doi.org/10.1093/bioinformatics/bty089 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Wandy, Joe
Niu, Mu
Giurghita, Diana
Daly, Rónán
Rogers, Simon
Husmeier, Dirk
ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title_full ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title_fullStr ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title_full_unstemmed ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title_short ShinyKGode: an interactive application for ODE parameter inference using gradient matching
title_sort shinykgode: an interactive application for ode parameter inference using gradient matching
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022662/
https://www.ncbi.nlm.nih.gov/pubmed/29490021
http://dx.doi.org/10.1093/bioinformatics/bty089
work_keys_str_mv AT wandyjoe shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching
AT niumu shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching
AT giurghitadiana shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching
AT dalyronan shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching
AT rogerssimon shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching
AT husmeierdirk shinykgodeaninteractiveapplicationforodeparameterinferenceusinggradientmatching