Cargando…
Heat Shock Gene Inactivation and Protein Aggregation with Links to Chronic Diseases
The heat shock response involved in protein misfolding is linked to the formation of toxic immunogenic proteins with heat shock proteins (HSP) as regulators of amyloid beta aggregation. The defective amyloid beta trafficking between different intracellular compartments is now relevant to HSPs and au...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023501/ https://www.ncbi.nlm.nih.gov/pubmed/29783682 http://dx.doi.org/10.3390/diseases6020039 |
Sumario: | The heat shock response involved in protein misfolding is linked to the formation of toxic immunogenic proteins with heat shock proteins (HSP) as regulators of amyloid beta aggregation. The defective amyloid beta trafficking between different intracellular compartments is now relevant to HSPs and autoimmunity. Overnutrition, temperature dysregulation, and stress repress the heat shock gene Sirtuin 1 with the induction of HSP regulated amyloid beta aggregation involved in the autoimmune response. Defective circadian rhythm alterations are connected to inactivation of the peripheral sink amyloid beta clearance pathway and related to insulin resistance, protein aggregation, and autoimmune disease in non-alcoholic fatty liver disease (NAFLD) and various neurodegenerative diseases such as Alzheimer’s disease. Nutritional therapy is critical to prevent immunosenescence, and plasma Sirtuin 1 levels should be determined to reverse, stabilize, and prevent protein aggregation with relevance to mitochondrial apoptosis and programmed cell death in chronic diseases. |
---|